
r---------,
r I
J Snobo14 I
, I
l...--- --.J

A Computer Proqramming Language

for the Humanit.ies

Rotert Gaskins, Jr.

Laura Goul~

UnIversity of California

S Pr i. n<J, 1 q 7 ~

Co~vrlqht 1 g72 by Fobert r;d~ki.ns, ,lr., ann T..a'Ira Goulri
~ll ~iqhts ~cs~rve~

Nothinq amuses more harmlessly than
computation, and nothing is oftener
applicable to real husin~ss or
speculative inquiries. ~ thousanrl
stories which the iqnorant tell, an~

believe, die away at once when the
conputist takes thE'm in his qrip.

Samuel Johnson,
Letter to Sophia Thrale
(at Bath), July 2t~, 1783

[Notp: the starred sections ar.e not yet available 4/1/721

Preface ••• vii

1A= Compu~er programming in Snobol ~ ••••••••••••••••• 1
Devising a rr.oqram 1
writing a Snobol ?ro1ram T@xt 4
Tnput ann Output 5
Execution of a Snobol Progr~m fi

*1B. Compu tpr Appll.cation~ Using Snohol ••••••••••••••

2A. Assignment •••••••••••••••••••••••••••••••••••••• R
Lit~ral Values A
Variables q

Assignment Rule~ 10
Thp Null Value 11
The Special Variable OUTPTJ'1' 12
~he Spe~ial Variable INPUT 11
Other Forms of Input ann nutout 14
P[,oc~c1urp~ 14
The 'rpT M() Proce(!nre 15
The SIZ B0 Proceclurc 16
Op~ra tors 1n
The Concatenation npprator ,~

The ~rithmptic np~r~tors 1Q
A Compl~te snobol Program ~ext 20

*2B. 'P.xamples and APplicati.ons ~ ••••••••••••••••••••••

3A. The Flow of Control ••••••••••••••••••••••••••••• 21
T.. ah~ls 21
C:;o-to's 22
The Sppcial ~rans~er ~Nn 23
Faill1t"p of thp Pulp ~4

Failurp of I"JPU"r 2'.
F.valuation ~111es 25
~est Proc~ourps 26
Thp. Test Proc~durp.s IDEN'T' () an~ DIFFER 0 26
The 'rest Proc0fl ure L~'r () 27
Arith~etic ~0St Procp~ur~s 28
Test PrOCe(lllrtlS wit.hin Assignment Rulps 28
Loops 2q
,",oops Contt'oll~fi by nat.a Conr1it.ions 30
Loops Controlle~ hy Counts 31

*3R. Examples and Applic~tions ••••••• ~ •••••••••••••••

4A. Pattern Matching •••••••••••••••••••••••••••••••• 3~

The Pattern Matching Rule 13
'l'he Fepl~cemp-nt R11le 14
~h~ ~lternation nper~tor lS
The Pattprn Procedures ~NY() and NOTANY() 36
The Conrlitional \ssignment Operator 38
Concatenation of Patterns 3q
The rmmc1iate Assiqnm~nt Operator 40
'r he Pat. t ern P r oc ed u r p sSP" N 0 and BREA K 0 4 1
'T'he PC\ttern Proceliure LEN () 42
'l'he ~ NC II OR () Proced u re 41
The Pattern Procedur~s TAB() and R~AB() 44
~he Pattern Proce~ures POS() and RPOSO 46
The r· at. tern 1'> roc ed n re A RR NO (l 46
Assigninq Patterns ~o Variables Uq
~he Deferred tvaluation Operator 50
The Special Pattern Variablps ~RR an~ REM S?
A Program to Illus~rate pattern-~atching S3

*4B. Examples and Applications
~A. Indirect R~fer0ncinq •••••••••••••••••••••••••••• SS

Th0 Tn~jr0ct Pef0rpncinq npprator S~

'T'h0 Opprilnd, of th(l In(~ir0ct n~((~rencinq

Operator S7
A Proqram to Produce a Character Count sq
Concatenation within the Operand 60
~ Proqram to Pro~uce a Frequency Table 61
~ Proqram to Produce a Word count 6~

Indirect Referencing within the r,o-to 61

*58. Fxamples an~ Applications •••••••••••••••••••••••

nA. Programmer-i1efined Procedures •••• ·••••••••••••••• 10
Def ininq a Procerlure 70
Th(.) DEF IN"? 0 Proced ure '12
Procedurp Bodies 74
rrhe Feturns RF.TflPN, NPE'Y'TJRN, and FRE'T'URN 75
Procedure Calls 1~

The passinq of Arqumpnts 11
Anditional Internal Variables 78
References to ~xt0.rnal Variables 80
~ii1~-effects of Proce~ures R~

Levels of Tnternal Var.iables 81
'TIhe Use of N~F.'!'n~N to Return a Variahle qO
'l'h~ APPLY () Proce(~ u re 92
tlsinq a Library of Procedures qU

*~B. Examples and Applications •••••••••••••••••••••••

7A. Arrays •• 100
Creating an Array 100
Array Items an~ rtem References 101
Comp~rison with In~irAct Referencinq 102
~ulti.-~imensional Arrays '03
Th~ 1\ RR 1\ Y() Proc~o nre 104
Selectors 106
Failure of an Item R~ferenc~ 106
Special Prohlems Concerning Item References 107
The ITFMO Procenurp. 10R
'rhe PRO'l'O'1'YPF.() Procedure '10
The "rYPEO procedure 1'1
Procennre to Betllrn a Selector. '13
Proce~ure to Tnterchange Two ~rrays '14
The Name Operator 116
Forminq all Selectors of an Array "8
Procpoure to Return the "Next" Selector 120
Proceullrc to neturn a Copy of any Array 122

*1B. Examp10s and Applications •••••••••••••••••••••••

*8A. Programmer-opfinen Data Structures ••••••••••••••

*88. ~xamplps and Applications ••••• ~ •••••••••••••••••

Appenrlixes,

A. SumMary of prpoefinc(l Proce~ttrps ••••••••••••••••• 121
I. Proqram Proccour0s 127

A. ~est Proce~ures 121
B. Result Proce~ures 128
c. nat.a Procednres 130

TI. System Proce1ures 1~S

A. npc]arations 135
R. Access to ~ystp.m Tnform~tion 116
C. Requests for Syst.em Act.ions 143
D. Input/Output Proce~ures 146

B. ~ummary of Preoefine~ P~ttern Variables •••••••••• 1~O

ARB an~ RE~ 1'10
131\1. 1')0
PAIL 150
AB(H~T 1'11
FRNCE 1 £)1

c. Sumrlary of Operators ••••••••••••••••••••••••••••• 151

D. Summary of Proce~ure ~xecution ••••••••••••••••••• 154

*F.. The PattpJ:'n-Matchinq hlgorithm ••••••••••••• 4

*F. Summary of Snobol Arithmetic ••••••• 0 •••••••••••••

*G. ~ummary of Input/Output Procedur~R •••••••••••••••

H. Proqram Text ~~presentation •••••••••••••••••••••• 1SS
statement Format 1~5

Continuation Car~s 155
Comment Cards '~6

tisting Control Cards 1S6
Extended Syntax of Snohol statements 156

I. Char.acter Set Represent~tions .0•.......... 15A

,1. SYnt ax 0 f Proq ram Te j(t s,.................., 6 1

K. 5ummary of Compile-time Error Messages ••••••••••• 166

L. ~ummary of Fxecut.ion-time Error Mp.ssaqes ••••• ~ ••• 161

M. Non-standard Fp~tures of R~rkeley Snohal ••••••••• 112
I. Features which are Han~le~ Differ0 ntly 113

ProceoureR 173
Ope ra t. 0 r s 17 4
Key\rtor(Js '75
Datat.ypes "5
System Transfers 175
out. ~u t. 1"1 r;
Progr.am Pepresentation 176
Th~ Program T,isting 177

II. Features ~hsent from the ~erkeley Version 171
ProceourE's 177
Operat.ors 1"79
Keywords' 17q
Pattern Variablp,s 1J3 1
natatypes 181
Pattern Matching 181
Arithmetic 181
output 1A1

III. Featurp.s not Prp.sent in the Hell Version 1R2
P raced ures 18?

In~ex ••• 183

PREF~CF

Edmund Fuller has described hearing an intervipw in
which Edwarrl R. Murrow asked Mickey Spillane how he could
bring hims~lf to pander to the public tast~ by writinq tho
kind of h()ok~ he rlid: Spillane's luminous reply, accor1inq
to Fuller, \ras: "I write the kino of books I want to read
and can't fi.nd."

We, with much the same motivation, hav~ writtpn thi~

description of SnobolLl, a computer proqramming langnaqp for
the humanities. Our own traininq and interest is in th0
study of language and literature, and so the exarnpl~s ~n1

ex e r cise 5 Ct r ~ direc t e r1 par ticu 1 ar 1y t. 0 Wa [" d the i1~ achi n ("
til anip tl 1 cl t i 0 11 0 f 1. in 9 u is tic 0 a t a and 1i t era r y t P. :c t s • ~ Vl? II S () ,

the description ShOl11d be useful to stuoents of ma:1Y
oisciplines, since t.he first part of each cha ptf;,r pcespnts
features of the languaqe in a qeneralize~ \fay, ann the
particular examples in the second part of each chapter havp
heen chosen to exhihit principles and techniques which can
easily be appli(:td to vPlbal or symbolic data in a wi('je ranqr:·
of hl1manistic anr1 social science applicClt.ioHs ..

~his pr~sentation of Snoho14 is p(\rtiGularly ~0siqn0~

for me mbe r S 0 f the iT n i v e r 5 i "c Y 0 f Cal if 0 [' n i a com mil nit Y \\' h 0

h i\ ve no p rp v i 0 Us k now1e nq e () f com put. ~ r sot' co 17\ 11 '.1 ~. r' \­

programmi.ng. It describes a dial?ct of the lanlll<\C{p for
Control Data Corporation 6000 series machines, imp10rnentp~

at t.he Rerkeley Computer Center hy Paul ~lc,Jones an~ Ch(lt~J.ps

Simonyi; Mre McJones has reviewp.li our work ,'5 it has
progressed, and has ma~e many helpful suqg0stion~.

It. is intended that this manual will be expan~e~ to
provirle a complete descri.pt.ion of the Snobo14 lan'1uafJe and
of various related facilities available at the qerkeley
Cc mpu t eree nt e r wh i c h are 0 fin t. p r. eo s t t 0 Snob0 1 t1 S e r s • ~? 8

would nat.urally be please~ to r~c~ive ~uqqestions for
improv~ments ~n~ additions from readers. We hopp. that fpw
mistakps renlain, even in this preliminary v~rsion, but prtch
of us blames the other for any that. may he found.

,

1A. COMPUTER PROGRAMMING IN ~NOBOL

Snobol is a proqramming lanQuaqe, one of many such
artificial lanquages which may be us~~ to convey
instructions to a computer. ~03t computers may be instructe~

in a wide variety of programming lanquaqes; these lanqnaqes
diff~r from one another, as no natural l.:lngltages, bv h2..'ling
differ0.nt vocahnlaries and svntact.ic structures.. '"1or~

imrortdntly, however, they differ. in the range of concepts
which they ar~ capable of expressing.

Different programminq languages have been develope~ for
~ifferent kinds of prohlems or probl0ffi areas. Some have he~n

devised primarily for descrihinq ·qonpr~l numpric or
alg0braic problems, others for ~escrihinq the structure of
husin P. s s r- e cor asan d f i 1e 5 , s t i 11 °t. Le r s f 0 t' h i q h1 y ~.; pee i ric
pl1rrOSCS such as controlling machine tools, simulatinq
econc~ic systems, or making computer-gen~ratcd movies.
Sno bolis d istiog uisherl hy very power En 1 an (] Q0rl2t';:\ 1
cap~bilit.ies for- tnallirulatinq st.r~.nryf'; of ch(1ractf~r~)f maKJ.nrr
it r;articularly convonient for \o10rkinq with data [['om u["0;;.5
such as linguistics, literature, verhal behavior, and th~

hUloanities in general, it is also very useful for exprcssiuo
sophisticated non-numeric problems in the field of cornp'.ltc>r
science •

.n~.Yi§i!lg_2 __ Pr.Q.9.!i!1!b.. A description of how a comnut0.r i.s
to q0 aboU t. sol vingaprob 1erne 0 nsis1'..3 0 f ali s t. 0 f t ask ~-: 0 L

actions to be perfor-med. A specification in somg program~inq

language which describes such a series of tasks complpt01y
is c~lled a "program text." Before a progr.am t.ext can be
written, the task which it is to d~scrihe must be clearly
understood. If, for example, a task has been expresse~ in
Euglish as "find all vowels in a word,n the followinq
questions must te resolved before the programming of the
task in somp programming lanquaqe can be undertaken:

(')
(2)
(3)

four.d?

what is a vowel?
wha t is a wo rd 1
what should be done ~ith the vowels which are

The answers might be as follows:

(1) one of the characters ",E,I,O, or U
(2) a s t r ing 0 f c ha r act e r s t ° be pr 0 v i d (~ cl d S da tat 0

the rrcgram
(3) count them and then print the total

11. Com~uter Programming in Snobol 2

Given these clarifications, one can then translate the
unrigorous English sentence "find all vowels in a word" into
a rigorous step-by-step description of what must be donp.;
this step-hy-step description can then be translated again
into a series of statements in an appropriate programming
language. The intermediate translation may exist only in the
mind of the programmer, as is often the case if the task is
a sim~le one, or may be recorded in some fashion so that it
may be considered for correctness.

One of the best ways of recording a step-by-step
description is to write down a seri8s of numbered statements
specifying ~xactly what is to be done. These statements are
still in English, but a much more detailed and careful
English than that of the original problem. The statements
diffe~ from the sentences of a natural language paraqraph in
that they are net intended to be processed on~ once or in
the order in which they arp presented; hence, the statements
are numbered so that the order in which they are to be
·processed, often repeatedly, may be specified. A set of
numtered statements descr.ibing how to count all the vowels
in a ser ies of \lord s and to pr i nt the conn ts f,\ iq ht. look as
fo110,,"s:

S'!ART
(1) Get the next word; if no more wor~s, STOP.
(2) Pt'int t.hat word.
(3l Set the tally to zero.
(4) Get the next character of this word; if no more

characters remain, go to (7); otherwise go to the next
statement.

(5) Determine whether or not this character is an
A~ 'E , I , 0, 0 r U; if. i.tis not, goba c k t 0 (4~: 0 ther ",i se q0 t.o
the next statement.

(0) Add one to the t.ally which is keepinq track of the
number of vowels in this word; go back to (4).

(7) Pr.int the value of the tally, which now represents
the total numb~r of vowels in the word. Go back to (1) and
attempt to get another ~ord.

Note that this program description has been augmented
to count the vo~els in any numbpr of words, one after
another, and to print the counts s~p3rately. It would not he
useful to write a program to count the vowels in a single
word only, as the counting could be accomplished by hand
much faster th:ln the pro9!'am could he wLitten. (Ho"Jc'1et", for
more complicated tasks, <1 program can often he written much
more ~asily than the task can be performed even once hy
hand; th~t such a program could then be u5cd again might
well be of seccndary importance.)

1A. Computer Prog~amming in Snohol 3

Another method of recording a step-by-step d~~cription

is to use what is called a "flow char-t. u In a flow chart' the
specification of what is to be done next, or the "flow of
contIol," is indicated by means of lines and arrows rather
t han by ph r as e 5 0 f the f 0 L m n 9 0 b a c k to (1) • It A flowe; ~ d. r t
equivalent to the numbered statements just provided might
look as follows:

S'IART
1
1<--­,

(1) V

r-------,
I get next IFail
, word 1----> s'rop
L- ~~

)Succeed
J

(2) V

r- .,
! frint the I
J word J
L- J

I,
{3} V

1---------,
I sP.t tally I
, to zer.o ,
l- .J,

1<------.--------------------,
I<~---------, I

(.) V (5) Jraii (6) I
r ., r-------, r _.--,
I get next I Succeed I test' for IS ucceed I add on ~ I
I character 1------->1 A,E,I,O,U 1------->1 to tally J
1.- .J L .J l. J

IFail
J

(7) V

r--------,
I print I
I value of 1
I tally I
l- .J

.,
I,,
I
J
1,
;,
I
J

1
J

I
J,
f
I,
I,
I
I
I
J,,
I
I
1
I
I,
J

1A. Computer Programming in Snobol 4

Writing_~_~nQ~~1-E£2g!g!_~!~ Now that a detaileo
metbod for solving the problem is clearly understooi, it may
be translated into a set of statements in the Snobol
language. Seven Snobol statements are provided below, one
for each of the numbered English sentences, or,
equivalently, ene for each box of the flow chart. These
statements are provided here to illustrate the close
correspondence between the Snobol statements and the step­
by-step description, to give seme indication of the
appearance of a programming language, and to point out some
features of the Snobol language in particular; a complet~

discussion of the meaning of these statements must be
deferred to later chapters of the text. (comments, beginninq
with asterisks, have been inserted for spacing and to
explain the purFose of the statementz.)

* STEP ,: REAr IN THE NEXT WORD - If NO MOn? WORDS, STOP

*READ WORD = TRIM (INPUT) · F (END)..
*
* S'IEP 2: PRI NT THE WOFD JUST READ IN

* OUTPUT ':. wonn
*
* STEP 3: SET 'IHE TArot y TO ZERO

* TALLY = 0

SEE IF THIS CHARACTER IS A VOWEL - IF NOT,
GO BACK AND GET NEXT CHARACTER

GET THE NEXT CHARACTER C' THIS WORD - IF NO ~ORF

CHARACTERS, PRINT THE VOWEL COUNT FOR THIS WORH

CHAR

•* S'IEP 4:
•
*GETCHAR

** STEP 5:

*
*

WORD LEN (1) • CHAR = NOLL

ANY('AEIOO')

·..

. ...

F (PRINT)

F (GETCHAR)

*• S'IEP 6: CHARACTER IS A VOWEL - ADD ONE TO THE TALLY

*

PRINT NUMBER OF VOWELS AND RETURN TO
REAr IN THE NEXT WOFD

** S'IEP 7:

*
*PRINT

*END

TALLY = TALLY + 1

OUTPU'I = TALLY

..·

··

(GETeRA R)

(R E AD)

1A. Computer Programming in Snobol

Each Snobol statement consists of three basic parts,
any of which may be absent. These parts are called the
label, the rule, and the go-to. The label is thp. first part
and serves to identify the statement (as did the numbers in
the English description above); the rule is the midr1le part.
and srecifies some action to be performed; the go-to is thp.
last part and indicates which statement is to be considered
next by providing its label in parent.hp~ise (The F within
the first three go-tots ahove indicates that the go-to is to
be taken only if the action specified by the rule preceding
it fails; otherwise control is sent to the next statement of
the series.)

InElll_~nd_£Q!~Q!~ Before the sta~ements of a program
text can be used to instruct a computer, they must first he
"fut in what is called "machine-I:'~adahle form." For instance,
they must be punched on cards to be read into the computer's
memory via a card reader, or typed in on a tpletvpe
conn~cted to the computer. The data to he manipnlated, snch
as the words whasp. vowels are to be counted, arp. seldom
explicitly provided within a proqram text, but arp prepared
separately and must also be put in machine-readable form
before they can be accessed.

The Snobol language provides facilities for rearlinq in
units of data, called "records," and for wri.ting out tho
results of manipulating this dat.a. 'l'hese are callp-~ "inp1lt"
and "output" facilities. The first. statement of th~ program
text above indicates that some input is neened; in
particular, it specifies that an in~efinite numher of wor~s,

one at a time, are to be read from a ufile" of dat.a which
must be supplied with the program. The second statement
specifies that some output is to be produced; in particular,
t hat the W0 r d just readin is to be pr i ntell a t. t. he beg inn i nq
of a new line of printer paper. The last statement specifies
that the nllmher of vowels fcund within that word is to be
printed on the followinq line.

If the file of data to bp. used as input for the program
text above were the following list of yor.ds

HIPfOPCTAMUS
HIPFOS
HIPFOSTDEROS
HIPFCSPONGI1\
HIFFcrrIGRINE
HIPFOrrCfi1Y
HIFFOTRAGINF
HIPFC'IRAGHS

1A. Computer programming in ~nobol

then the output produced by the program would he the list

HIPPOPOTAMUS
5
HIFfCS
2
HIFFCSIDER05
5
HIFFOSFCNGT~_

5
HlfFCTIGRINE
5
RIPFOTCMY
3
HIPfOTBAGINE
5
HIPfOTRAGUS
4

(;

Results from executing a program may be printed on
paper for personal perusal, written on magnetic storage
media, or punched on cards. Since the last two are machinc­
readable as veIl as machine-writeahle, the output may he
used again, without modification, as input ~ata to be
further processed by still another program.

E~£Qiion_2f a SD2~Ql_R!~S!~~~ It is not enough for a
computer to have available to it both a program text an~

scree data in machine-readable form; it must also have
available to it a "translator" or nsystem" to process the
language in which the frogram text has been written. A
comFuter may have available any number of languaqe
processors and hence may be able to "untierstand" any number
of languages. A processor itself consists of a program,
written in some programming language (often in a languaq~

that is basic and unique to a particular computer, but
possibly in Snotol). The data which such a system will use
is a program text in the lanquage for which it is the
processor.

The S'nobcl system describ.ed here consist s of two
s epa ratepaI' t sea 11edt.he Ifco 11\pi 1 er" and the "int er pre t e r • It

The compiler uses a Snorol program text as its data, reading
in the statements one at a time in the sequential order in
which th~y appear. It prints and nnmbers each statoment to
he insFected lat~r by the programmer and t~sts the st~tem~nt

to determine whether or not it is syntactically correct,
that is, whether or not it conforms to all the ru10~

governing th~ pro?er structure of a ~nobol statem~nt. (~his

process is analoqou~ to parsing a natural language sentence
for grammatical correctness.)

1A. Ccroputer Programming in Snobol 7

If a state'ment is well-formen, it is convprted by thE'
comfiler into a represE?ntation (IiCode tt) suit.able for later
processing by the inter~reter; if it is not well-formed, it
is flagged as being syntactically incorrect. All statem~nts

of the program text are processed, even if incorrect on~s

cccur, so that all syntactic errors are found. The
programmer can locate the incorrect statements hy inspecting
the prcqram listing: he can then correct them and onCG again
sub~it his program text as data for the compiler to process.

If no compile-time errors occur, the message SUCCESSFUL
COMPIlATION is written at the An~ of the proqram listiner:
The interpreter then starts processing, using the convprte~

statements of the program text as its data; the entirp s~t

of converte~ statements renrespntinq a proqram text is
called a "proqram. It The interpreter execut(~s the prOQrall1,
causing the computer to perform whatever task has been
described. It starts by executing the first sta~ement of thp
program and then procee~s to process thp convprtp~

statement~ in the order specified by the go-to's, rcadinq
inp~t from a data file and producinq outout whenever
requEsted. Execution continues until the task is finishe~

(as siqnifierl here by the END sc.atementl or until ~ n
execution-t.ime error (such as a request to multiply 'CAT' by
• C 1\ '[AI. 0 G ') c c curs • I f t his hap pen s , t h~ pro9r a r:lrlerea n
insrect the error message printed by the interpreter and can
attempt t.o det.ermine his mistake. He can then mn(lify thp
program text and submit it ence again to the joint ptocessps
cf ccmpilation and execution.

A

2A. ASSIGNPlF.NT

A Snobol program text consists of a sequence of
statements in the Snobol languaqe. These statements ar~

comriled to produce a series of instructions to the
computer, causing it to store data in its memory, to perform
operaticns on this data, and to preserve the results for
human inspection and/or for further processing by machine.
1he data to be manipulated is usually stored externally to
the program and is read in by the program a~ it is needed. A
few data values, however, are often written directly in the
program t~xt itself. These values may be of several
different types, hut are most often simply strings of
charaGters.

Lit~I~l-!~lue~~ Strings are sequences of charactp.rs
which may be of any length and may be composed of any
characters in the computer's character set (see Appendix I} •
strings whose characters are written directly in the program
text are called string literals and are designated by heinq
delimited by either single or double quotes; a strinq
consistinq of the five Enqlish vowels may be written in a
Snotol program text as either

'AEIOU' or "AEIOU"

with exactly the same effect. This p~rmits a string literal
to contain whichever quote mark is not being used as the
delirriter without confusion. For example,

ULADYoCHATTERlEY'SaLOVER"

is a string of 23 characters, while

·"AY!HoHEoSAIDnBRIEFLY.'

is a string of 22 characters.
(reFresented here by the symbol
other characters in string literals.

Notice that spaces
c) are treated like any

strings consisting of nothinq hut digits with perhaps
an initial plus siqn or minus sign are called numeric
strings and are of datatype Integer; all other strings are
of datatype String. ~hose strings which are of datatype
Integer, and which do not have an initial siqn, may he
represented in the program text with or without surroun~ioq

qu~tes. If quotes are nct used, as in

669 7~49 o 23

2A. Assignment 9

then these numeric strings are called integer literals. When
an integer literal is stored in th0. memory, any leadinq
zerces it may hav~ had are remo\·ed; that is, the integer is
stored in a "canonical" form. (The canonical form of zero is
the single character 0.) Thus 00023 and 23 and '23' all have
ident ical represen t at.i ons in the melltOL"Y. Lea ding ZP. roes rna y
be preserved fer non-numeric applications by representinq
integers in the program text as string literals containinq
1e a din q z e roes. For e x a lD pIe, i 00 0 2 :3 i W0 U1 rl be f) tore d a s a
five-character string, while 123 ' woul~ he stored as a two­
character string. String literals are always store~ within
the ccmputerCs memory exactly as they are represent~d in the
pro~ram, while inteqer lit~ral5 are always stor0d in
cancnical form. In what follows, the term string will he
used to include objects of datatype Integer as well as
ObjEcts of data type String.

!~£i~~lg~~ Once a value of any datatype is store~

within the computpr's meMory, some method must be p~ovide~

fer referring to it so that it may b~ used repeate~ly

thrcuqhout the p~ogram. Each value is stored hy beinq
assign€d to a variable, which serves as a r0ference, OL

poir.tp'i:, t.O the value. Every variable has a name, and any
non-null string of character~ may be uspd as the narnf\ of a
variable. That is, the name of a v~riable may bp of any
length and may be ccmposed of any characters of tho
character set. Those names which hegin with a lAtter an~

consist of ~n arbitrarily lonq sequence of lett0rs, ~igits,

and periol1s are said to he in "identifier form U and may be
written directly in the program text. Thus

RHYMf,1 VOWELS UNSUCCESSFUL.COGNATES P.v.c

are all valid representations of variables in program texts
since they are all identifiers, while

1RHYME •• VOWELS 'IESTj3 p-v-c

are not, since the first two don't hegin with a letter, and
the last two contain impermissible characters.

string literal~, inteqer literals, and variables thus
haVE [epres0ntations in a program text which allow thpm to
be easily differentiate~ from one another: strinq lit~rals

begin with a quote (and must enrl wi.th a quote as w0Il),
int€q~r literals begin with a rligit, and names of variables
begin with i\ lpttp.r. (Other ways of reprpsenting variilbles,
and particularly variablp.s whose names are not in t.he form
of identifi0T:"S, ar.e rli~c\)sseri in Chclpter 5 and Chapt.cr 7.)

2A. Assignment 10

12§ign~gnl_B~!~2~ The most fundamental kind of rule in
the Snobol language is the assignment rul~ which is used to
assign a value to a variable. ,he variable is usually
represented by an identifier and the value can be a string
or an Integer or may he of any other datatype (Real,
Pattern, Array, etc.). For example, the assignment rule

VOWELS 'AEIOtJ'

specifies that the five-character string AErou is to b~

stored in the memory as the value of the variable named
VOWELS. Similarly

COUNT = 47

specifies that the integer 41 is to be stored as the value
of the variable named COUNT.

In general, an assignment rule has the meaning: let the
variable represented cn the left side of the equals siqn
refer to the value specified on the right side of the equals
sign. (It is ohvious that the equals sign does not have its
usual arithmetic meaning in an assignment rule; it is being
used as an "assignment siqn.")

An assignment rule may have a variable name on its
right Eide, rather than a literal. When a variable occurs on
the right, it is used to refer to its value. Thus the
sequence of rules

ALEPH ':
ALPHA 1 =
LETTERS =

'ABCDEFGHIJKL~NOPQnSTUVWXYZ'

ALEPH
ALEPH

specifies that the variable ALEPH is to havR as its value
the 26-character string of the alphabet, that the variable
ALP F. A1 i s t a h a v(\ asit s val u~ t h P. cur [0n t °l;t 1 u e ()f ~ 1. F. r H,
tl nd A 0 for t h • Innnan ~1q nm~ n t t'II 1f!, Wh,. n t, h(i nit mn 0 f "
,ari8bl~ occurs on the left of the dssiqnment slqn it stands
for the variable; when the name of a variable occurs on thp.
right, it stands for the value of that variable.

The relation between a variable an~ its value neen not
be a per.man@.nt one. tlsually a variahle is assiqnerl a variety
of different values in th~ course of executinq a sinqle
prcgtam (hence the term "variable"). A variahle name~ wonn,
for example, might be assiqnen as its successive value~ each
new wcrd encountered in a group of ~ata, thus changing its
value 10,000 times for a text 10,000 ~ords in length. Each
time a value is assigned, to a vat'iable, the prev ious value

2A. Assignment 1 1

of the variable is lost; thus the value of a variable is
always the one most recently assign€d •

.!.h~_~Ql1_'y£lu~.!. All variables, before they have been
assigned any Cth01' value, start out with the "empty" or null
valne. After a variable has been assigned a non-null value,
it may be given the null valup again by ~xecutin~ an
assiqnment rule with a null value en the right side, such as

VOWF.LS =

The null value may also be represented by an "empty"
literal, one with no characters in it, as in

VOWELS = , ,
or

VOWELS = ""

or by a variable which has a null value, such as

VO~ELS = NULl,
or

VOWELS = ANYTHING

if t h Eo va r i ~ hIe s NUL tannANY'f HTNr; h a ve n u 11 val u e s ,,, hen t h 0

rules are ex~cnted. (In all exampl(?s which follow, wherev'?r
the variable NULL occurs it is assume~ by convention to haV0
a null value.)

The null value is a sp~cial entity in Snohol, distinct
from all other values, and has a variety of important uses
in the lanquaqe. Notice particularly that it is
distinguished fr.om the strings space and zero. Thus

VOWELS = 'e'

VOWELS = '0'
and

VOWELS = 0

are each assiqnments which give the variable n~me~ VOWELS a
non-null valup; the first value is of datatype String, while
the last two are of datatype tnteg.~r. Althouqh the nlll1
value is a distinct value, it is not qiven a speci~l

datatype; by convention the null value is of datatyp0
In t (.> g e r • l' tllY S the 9enera 1 t e r IT: S t r ing , ~lhi c: h inc1u i1 e ~~

objects of ~atatype strinq as well as of d~tatype Inteqer,
inclu~es also thp null valun unless specifipd otherwiso.

2A. Assignment 12

Tbe_~~~igl Vari~b!~_QYIg~!~ Once values have been
stored within the computer's memory, they may be printed out
by assigning them to the special variable OUTPUT. This
variable differs from others in having the following special
proferty: whenever the variable OUTPUT is assigned a string
as its value, that value is transmitted to a file to be
printed on a line printer which is attached to the computer.
Each execution of a rule in which OUTPUT is assigned such a
value results in the printing of a new line of inforreation
(a recorrl). For example, execution of either

OUTPU'I = 'AEIOU'
or

OUTPU1 = VOWELS

(if the curr.ent value of the variable VOWELS is the string
AEICUl would cause the five letters AEIoa to be printed at
the left margin of the next available line of the output
pa pe r.

If OUTPUT is assigned a null value, as in

OU'l'PU'I
or

OUTPUT = NULL

the result is a null record, ~hich aPFears as a blank line
on the output papeL.

OUTPUT may be assigned a string cf any length as its
value, but only the first 132 characters, the numher of
characters available per line on a printer, will be printed.
The entire string, however, remains the value of OUTPUT. and
may thus be assigned as the value of other variables as
veIl. The v ariab1 e 0 U'I P (J T, 1ike any 0 the r va ria hl~, may be
used on either side of an assignment rule, as in the
sequence

OUTPU'I
ourrpu'l'
COPY =

= VOt4 ELS
= CUT l?U'1'

OUTPtl'l:

whose execution would result in the two lines of output

~'fICn

A'Elrn

Note that although the special variable OUTPH'" i.s
invclved in all three rules, no printing is produced by thp
third because it noes not specify that OUTPUT is to be

2A. Assignment 1 :1

assigned a valup.; rather, the value of OUTPUT, which at the
time the rule is executed is thA string AElon, is assiqnpd
to the variable COPY.

!he_2£££i~1-Y~£i~Qlf_InEQ!~ Data may be read into the
computer's memory by the use of the special variable INPUT,
which differs from other variables in that it has tho
fcllcwing prop~rt.y: wh~never the value of the variahle INP!f'T'
is needed for thp. execution of a statement, INPU~ acquirp.s
for its value the next record of the input file. For
examrle, in the assignment rule

LINE -= INPUT

the value of INPUT is needed, so it Cdn be assign~d as t.h0.
valJe of LINE: T.INE rec~ives. as its value the string of
characters in the next input recor~.

It is important to recoqnize that the value of INPUT
cannot be saved or used without assigning it to another
variablp in the same rule i.n which it is read. The next use
of IN Pn T wi 11 ref e r, not t 0 its presen t V' a I ne , bu t tot he
nc>xt recorn of the ilata. Thus the spquence

LINE1
LINF.2

= T NPUT
INPlJ'r

assiqns two successive records to the two variables LIN~'

and LTNE2.

~his example illustrates an important differ~ncp

between the variablos INPlJT anc1 OUTPUT: I"'lPfJ1' rlisplays it.s
special property (to acql1irp the next record of an inpnt
file as valu~) every time its value is neecl~d, but. not whpn
it is assigned a value; OUTPUT displays its special property
(to write a recor.d on an output file) every t.ime it is
assigned a value, but not when its value is needed. Thus the
last value assigned to OUTPU~ is always available for
assignment to another variable.

The special variables INPUT and OUTPUT may both be u~prl

in a single rul~, as in

OUTPUT = 1NPUT

Rxecution of
data record
execution of
listing of
Chapter J).

this rule will cause the characters of ~he next
to be printed by the line printer. Rppeatpd

s tJ c h a r u 1e co U 1 II be use (1 toma k~ apr i nt n rl
an entire group of data (as ~~ill hp. ~ho'.rln in

2A. Assignment , 4

The value of INPUT is always 80 characters long, a
convention adop~ed since that is the width of a card and of
linEs sent from many remote terminals. If the record beinq
read actually has more than 80 characters, the excess is
ignoreo~ if it has fewer than 80 characters, spaces are
added at the end to fill out the full length. Exeolting thp.
rule

VO~ELS = INPUT

where the next data record has the five vowel characters
starting in the first position, causes the vari~hle VOWELS
to be assig-:led a st.ring consisting of the 5 characters AElon
followed by 75 spaces.

Qth~.r_FormlLQf_l.n:eJ!.L~.n.1-lli!!..Q.!!!..:..The input to a Snobol
pr.ogram may exist in the form of punched cards or it may be
stored on a disk file or on magnetic tape. The output from a
program may be printed on paper, punched on cards, o~

·written on a disk file or on magnetic tape. Snobol provi~es

the special variable INPUT for reading cards and the special
variable OUTPUT for producing printed paper, but provides no
other special variable~ for dealing with the othAr input and
output devices liste~ above. If the proqrammer wishes to use
these other media, he must caus~ a variable to be associated
with a file for input or output, and then use that varia hlp
much as INPU~ and OUTPUT are used within his program.
M~thods of associating program variables with input and
output files are described in Appendix h, section II.D.

££Q~QQf~§~ The small amount of Snobol so far pres~nte~

allows one to enter data into the computer's memory (pithcr
bV writing it directly in the program text in the fo~m of
string and integer literals or by using the special variable
INPUT) and then to print it out (using the special variable
OUTPUT) • However, it is seldom the case that the out.put is
to be the same as the input; that is, some manipulation of
the data is usually necessary before the desired results c~n

he ottained. One way of manipulating the data is to invokp
what is termed a procedure. ~any proc~dures to perf0rm
common tasks are already predefined in the ~nobol language;
a Eumroary of all the predefined procedures which arG
available may be found in Appen~ix A. Resides using these
predefined procedures, proqrammers may define their own
procedures and add them to the language within their own
programs (see Chapter 6).

A proc0dure is invo~e"', or called, hy writinq (l

proc~n'Jre r~ference consistinq of the name of the proc~1ur~

followed direct.ly hy its (\rqnment list enclosed within

2A. Assignment

par€ntheses~ ~his mpans that the Snobol system is to perform
the action cf the procedure, using its one or more arguments
as data, and is to return the r~sult of carrying out the
action as the value of the procedure call.

!hg_!B!.nl1_.£rQ£Q1J!!§!~Th~ llse of the special variablp
INPUT almost always results in strings which have spaces at
the end of th8m. Since these spaces are often not wanted, a
TRIM () proc~dure is provided by Snobol which accepts any
expr~ssion ¥hose value is a string as its single arqum~nt;

the procedure returns as its value the same string hut with
all trailinq spacps rPffioved. Thus those 15 unwanted sp~ces

which occur in the value of VOWELS when the rule

VOWELS = INPUT

is execnten may be t.rimmed off by lIsinq t.he rule

VOWELS = ~F.IM(INPUT)

instead. This would give VOWELS the five-character v~lue

AEICU.

When the rule

VOWELS = TRI M(INPUT)

is executed, the eighty-character value of INPUT (the next
record) is obtain~d, the trailing sp,lces are reHlOVPO from it
by the TRI~() procedure, and th? shortenen strinq is
returned as the value to be assigne~ to the variablA VOW~LS.

Alt.houqh the TnIM () procec1'tlre is most oft.en use(~ to
trim the value of INPOT, it may be used to r~turn thp
trinmed value of any string given as its argumpnt. For
exam~le, in the rule

TEXT' = T~IM(TEXT2)

the call to the TRIM{) procedure returns the trimmed version
of the string which is the value of TRXT2, to be assigned to
the variable TEXT1. Th~ value of !~XT2 ~0mains unchanged:
that is, it still contains any trailing spaces it had when
the rule vas executed. To trim TEXT2 one could use the rulp

TP.X12 = TRIM(TEXT2)

Note that although variables and procedures may have
th~ sa til P. names, t here is no confusioll in t.hei r tlS~ in
program texts, since prccedur~ namAS are always followerl

2A. Assignment 16

i 1tl media tel y by' an open parent hesis preced ing the argumen t
list. Thus one may write

TRIM = TRIM(TEXT)

to assign to the variable TRIM the trimmed value of TEXT.

The-liI~~Jl_R£Q£€dl1!~ The length of any st~ing may b~

determined by a SIZEO procedure, "hieh accepts any
expression whose value is a string as its argument; the
proc~dure returns as its value an integer which is the
number of characters in that string. That is, executing

LENGTH1 = SIZE (VOWELS)

would assign t.o LENGTH1 the integer value 5, while executing

LENGTH2 = SIZE(INPUT)

would assign to L!NGTH2
argnment of SIZr~ 0 is
integer valup zero.

tho
a

integer value 80. When the
null value, the result is the

The length of the trimmed value
determined by using the procedures
together. This may be done by using the
two different assignment rules, such as

SAVE = TRI~(INPUT)

LENGTH = SIZE (s.~ VEl

of INPUT may be
TRIM () and SIZE ()
two procedures in

or, if the value of INPUT were not to be saved but only its
length, by comhining both procedures in a single assignment
rule, such as

LENGTH = SIZE(TRIM(INPU~»

Here the arqument of a pr.ocedure reference is stillanothp.r
procEdure reference; clearly, these nested procedure calls
must be processe~ from the inside out, since the argument of
SIZ EO is not know n until TRIM () has returned the resul t of
its work. As this example shows, an argument of a proc~dure

r.eference may be any expression which produces a value the
procedure is able to accept.

Q£E!~iQ!§~ Data may also b~ manipulated hy means of a
nu~ber of different operators rI'ovided within the Snohol
languaqe. Each operator specifies that some sort of
operation is to be performed on its operand(s). Operators
having a single operand are termed unary operators;

2A. Assignment '1

operators having two operands are tcr:men binary operators.
Often the same symbol is used in proqram texts to indicate
both a unary operator anrt a binary operator with different,
perhaps complet~ly unrelated, meanings. The meanings are
easily differcnti~ted, however, since a unary operator must
always directly precede its operand with no interveninq
blank; a binary operator must always be bound.ed by blanks. ~

summary of all the operators available in Snobol may hp
founrl in App~nrtix C.

1£~_£Qn£21gn2ti2n_Q£~I~12!~One of the most frequently
used operators is the concatenation operator. When the
operands of this binary operator ar~ strings, it sppcifips
that the two strings are to be conca~enated together, i.e.,
that the second strinq is to be appended directly to the
first. The symbol for this binary operator, since it occurs
so often, is simply a single blank (Which requires,
therefore, no fllrt.hpr blanks to ~eparat.e it from its
operands). For example, the assignment rule

ALPHA = VOWELS CONSONANTS 'YW'

contains two concatenation operators and specifies that tho
variable ALPHA is to be assigned a string built up hy t~kinq

the valu e 0 f V 0 HF.L S , foIl (Hi € d by the val ue 0 f CO"~ S0 ~! ANT S ,
fcl1owe~ hy thp two characters YW. If the variabl0s vnwEt~

and CONSONANT~ have previously been assigned thp exppctp~

values, then the variable ALPHA will be assigned th~ valu~

() f a 11 the c ha r a ct. e r S 0 f the alp ha he t , i nth e i ndie r'\ t Q (1
order. Thp. values of VOWELS and CONSONhN~S are iu no way
ch anqeil by the exe cu tion of this ru Ie: Ii kew ise, stJ bspq1le n t
changes in their values can in no way affect the v('ll\l~ of
ALPHA, which will chan1e only when another rule specifyinq
an a~signment to ALPHA is executed.

The variable appearing to the left of the assiqnment
sign may be usee wit.hin a concatenation on the right as
well, as in the rille

VO~ELS = VOWELS 'YW'

This rule appends the characters YW to the string which is
the cur.rent valup- of VOWF.LS and then assigns this rpsultino
string as the npw value of the variable VOWELS. The old
value of VOWELS is thereby lost.

Rules of this form are often used to collect succegsivp
characters in an increasingly long string. P.x.ecution of the
rule

2A. Assignment

LIST = LIST NEiCHAR

1 A

would cause whatever new character is thE' valu~ of NEWCHAR
to be appended to those already referred to by the variabl~

LIST, and the re-assignment to the vuriable LIST of this
longer string. If LIST had a null value, as it easily might
the first time the rule was executed, then it woul~ simply
be assigned the same value as that of ~EWCHAR: the
concatenation would indeed take place as specified hut there
would be no evidence that it had occurred since the null
value contributes no characters to the string.

Note that no spaces are generated by the concatenation
process itself. That is, the new characters are appended to
the list in the example above in a contiguous fashion with
no intervening spaces. If spaces are desired in the result
of a concatenation, they must themselves be concatenateo
into the string, as in the sequence

otJ~PUT' =
Otl'rpUT =

, An ROSE'
OUTPUT 'oI So' Ol1TPUT 'oI So' OU'l.'P U'J'

whose execution will produce the following output:

A RCSE
A ROSE IS A ROSE IS A ROSE

More complicated Snobol expressions may bp operands of
the concatenation operator; for example, the TRIM()
procedure may be used to produce a heading, as in

OUTPUT = • *.****0' TRIM (INPOT) '0.*****'
ot'

HE AD = TR I P1 (I NFUT) , [], TRIM (I NPU T) , a ' TRIM (I NPUT)

This last rule specifies that the next three data records
are to be read, their trailing spaces (if ~ny) trimmed off,
and a single space placed between the trimmed content of
successive records. The resulting string is then assigned to
the variable HEAD by which it may be referenced in other
statements of the program.

If an inteqer literal is involvGd in a concatenation,
it contributes the string of digits representinq its numeric
value. Thus

SUBST = VOWELS 0046
and

SUBST = VOWELS "16'

2A. Assignment 1 9

produce the same string as the new value of SUBST, na~ely

AEICU46.

!h£_!IilhE£!i£_QE~!£tor~~ Four binary operators are
provi(led wi'i::ilin Snobol for doinq the four basic arithmetic
operations of addition, subtraction, multiplication, and
division. The symhols used to represent these operatorr; in
the program text are as follows:

addition +
subtraction
multiplication *
~ivision /

Since these are binary operators, they must always he
bounded by blanks.

The assig~roent rules

ANSI,!ER =
1\ NSl-lER =
ArJ5W~~R =

669 + 527
«r, + B) - (C * (-n))) I E
(SUN' I SUM2) + 3

would all assign an inteqer value to the variable ANSWER,
providecl the variablcls to the right of th(~ dssignmpnt sirJns
alI refe r t () va J tJ (~S 0 fda tat y pel n t e 9 e r \I hen t ~ e rlt 1e s a r p

executeo.

Repeated executions of rules of the form

COUNT = COUNT + 1

are often used to count. the number of times a given event.
occurs. These rules are in some ways analogous to ones of
the form

LIST = LI~T NEWCHAR

which cause a new character to be apFen~ed to the valu" of
LIST; here a new integer, one larger than its prerlecessor,
beccmes the value of COUNT. If COflNT had a null value wh~n

the rule was executed, it would acquire the value 1 since
the null value is consi~ered equal to zero when it is an
opp.ran~ of an ~rithmptic operator.

The operan~s of arithmetic operators must always h0
numeric; th("'tt is, th~y must be any expressions whose valu(~~;

are int.eg<:~r:s, real numbers (numl)ers containing decimal
poi nt s) ,or ii u11 • Ii f.: a 1 nU nt be r san fi i nt e ge r s , howe ve r, may
not cccur together within the same (_l-ithm~t.ic ey,pression

2A. Assignment 20

(i. €., mi xed mo~e ar ithmet ic is not allowed). Further
infcrmation on Snobol arithmetic, including facts about real
numters, conversion of integers into real numbers and real
numbers into strings, truncation on division, etc., may be
found in Appendix *F.

!_~Qm]lg!~__~nQnol_-R£Qg!~ __!~!t~ Given below is a
comFlete program text which makes use of only a few of thp.
features of the Snobol language already described: it
emFloys only assignment, concatenation, and the special
variable OUTPUT; since all data is provided within th~

program text, the special variable INPUT is not neede~.

Comments have been inserted in the program text before some
statements to indicate their purpose; a comment is
dis tingu ishea by h ti vi ng an aster is k (*) as it s fir s t
character. Instructions for re~resp.nting program texts on
punched cards may be found in Appendix H.

* PROGRAM TO PRINT A PARTICULAR DESIGN INVOLVING FISH
* SET UP THE B~SIC COMPONENTS

LT = ,<,
GT = •>,
BL4 = enClo n '
BL10 = Bt4 BL4 '00'

** BUILD FISH WHICH SWIM LEFT, SWIM RIGHT, AND MATE
LFISH = 1T GT LT
RPISH = GT 1T GT
M~ISH = LFISH GT

** HUlLD LONGE~ STRINr,S COMPOSED OF DIFFERENT KINDS OF FISH
tSWTM = LFISn BLU LFISH Bt4 tF1SH Bt4 T.FISH Bt4
RSWIM = RFISH RL4 RPISH BL4 RFISH Bt4 ~FI~H BL4
MSWIM = MFISH BL10 MPISH EL10 MFISH BL10 MFISH
SCHOOL = FS~TM L5WI~

** PRODUCE FOUR LINES OF OUTPnT
OUTPUT = RSWIM R~wIM

OUTPUT = LSWIM LSWTM
OUTPUT = 5CHOOL
OUTPUT = MSWTM

END

Output from this program is the design shown below.

><> ><> ><> ><> ><> ><> ><> ><>
<>~ <>< <>< <>< <>< <>< <>< <><
><> ><> ><>)<) <>< <>< <>< <><
<><> <><> <><> <><>

21

3A. THE FLOW OF CONTROL

The statements which make up a Snobol proqram are
seldom designed to be executed in the order in which they
are ~rittp.n in the program text. Instc&d, certain s~qm2nts

of the program, consisting of one or more statements each,
are intended to he pxecuted repeatp~ly until some
tertIinating condition is encountered. This condition may be
that a certain pattern of characters has occurred in thp
data, that the data group is exhausted, that the segmenr has
been execute~ a certain number of times, etc. Once th0
tertIinating condition has heen met, t.h011 repeat.ed execution
of another such seqlf1ent, ur "loop," may begin. 1'hp choice of
the particular segment to be executed can be made depenrlent
on certain features of the ~ata being processec1, so the use
of the 5 arne proq ra m wit h differe n t da t a \I i 11 0 f ten r-- P.suI tin
the execution of a diff~rent set of statements from wirhin
tIle program.. The actual orner in which the st~t.ements of (l

program are executed is called thp. "flow of control."

The flow of control is specified by means of labAls
which are given to statements for purposes of referpnce, an~

ty ~€ans of go-to's which indicate the st~ternent to hn
executed next by making reference to its label. The label of
a statement is written to the left of its rule, and the go­
to is ~ritten to the right, as in

ASSlr.N VOWELS = 'AFrou' (N EXT)

Here the label of the statement is ASSIGN, the rul~

specifies an assignment, and the go-to specifies that the
next statement to he executed after this assiqnment takes
place is the one labelled NBX1. If the go-to part of a
statement is absent, it is underst.ood that control flows by
default to the following statement of the proqram.

1!~~!Q~ Any statement may be given a l~bel so th~t it
may be referred to by other statements of the pLoqrarn, or
simr1y by the pr.ogrammer for his own convenience. A lahel
must always be an identifier and should be chosen so as to
be rn ne m0 n i Cit 11 Y use [tIl. Car.e rn u~ t be t a ken \II hen g i v i n q

statements labels to see t.hat the same label does not OCellI:"

twice within a single program, or a ~ompile-time error will
occur.

Label~ are di~tinguish0~ fr--om the nam~s of variahlps in
a ~nobol statement by their. position. A lahel, it pr0sent,
must always start in the first character position of ~

statement and must he separated from thQ rule, if prespnt,

3A. The Plow of Control 22

by cne or more hlanks; if a statement is not labelled, the
rule must begin with a blank. Because they are distinguishe~

by position, labels and variable names of the same form may
be used freely together without confusion, as in

VOWFLS VOWELS = VOWELS 'YW'

which is a statement labelled VOWELS, whose rule specifies
that the variable named VOWELS is to have the characters YW
concatenated to its value.

It is sometimes convenient to write a statement which
consists solely of a label, as in

READ

since this makes subsections of ~he program text easy to
locate and makes modifications simpler.

~Q=tQ~~~ The presence of a go-to within a statement is
signalled by the occurrence of a colon which serves as an
eXflicit separator between the go-to and any other part of
the statement which ~~y have preceded it. Following the
colon (which may optionally be bounded by one or. morA.
blanks) thG information as to which st.atement is to he
executed next is provided by writing the label of that
statement within parentheses. For instance, the statement

.. (TEST)

consis~s of a go-to only (it has no label and no rul~) and
specifies that the next statement to be executed is the on~

labelled TEST.

Usually a go-to follows a rule, as in the statement

VOWELS = TRI ~ (I NPUT) ... (TEST)

which specifies that after the assiqnment is performed, the
next statem~nt to be executed is the one labelle~ TFST.

The form of the qo-to's just sho\!n is callell
unccnditional, because execution of the statement in which
they occur will always cause a transfer of control to thp
sta temen t la helled 'l'F,ST. More common 1y, qo-t 0' S a r 0

connitional upon t.he possible failure of the rule whieh
precedes them in the same statement. This causes a choice,
or branch, t.o occllr in the flow of contI:ol (lnCi allows thf"\
data to detQrrnine which pat.h through the program will bp.

3A. The Flow of Control 23

followed next. (Ways in which rules may fail will be
indicated presently.)

Conditional go-tots are written like unconditional qo­
to's, with the ad~ition of a prefixed P (for failure) or S
(for success). 1he statement

'IES'! LINE = INPUT ·· F (WRITE)

speci.fies that. control
larelled WRITE only if
Similarly, the statement

be transferred to
the r.ule LINE =

the statement.
I NP U'" f il i 1. s .

TEST LINE -= INPUT S (READ)

specifies a transf~r to the statement labelled READ Ynl£s~

the rule fails (i. e., if it succeeds). In eith~r statement,
if the conrlition for transfer is not rn~t, control will pass
by default to the next statement of the program. Thus a
con di tio na 1 go-to a I way s embodies buth a S\1cce ss anfl (1

f d i 1\l ret r.~. nsfe r , eve nth 0 nq h 0 ne 0 f ~~. hem may he p x pr (:~ S S ("\ r1
implicitly rather than ex~licitly. Both ~ success and a
failure t.ro.nsfer may he written explicitly in a ~;ingi0

statement as in

TES'I LINE :: INPUT ·· F (URIT'P,) S {RE~n)

since both cases are providea for e;{plicitlv. contrnl will
never pass to the followinq statement ~y default. The orrl~r

of the success nnel failure transfers is immat.erial and thp
space between them is optional; the only important
requirement is that no blank may intervene betw~en an F or
an S ana its following open parenthesis •

.T.hf_~.E~£.t~l_!I~n'§!~LEEQ~ 7\ go-t.o specifying a t.ransfer­
to END is used to terminate execution of a program. This
transfer has a special system ~efinition, and constitutes a
request to the Snobol system to stop executina. "J.lY numher
of statements in a program may contain qo-to's specifyinq
transfers to END, and the first such transfer to be tak0n
ends execution of the proqram.

An alternative way of terminatinq execution is to
execute the statement which stanrls last in the proqrrtm t~Y.t,

without trtking a transfer from it back to some othrr
statement of thp. proqrarn.

The r r~ i s nor p ~.. t ric t ion a Q a i n 5 t \l sinq F. Nf) a s the 1a b f 1
o fany s tat c m() n t 0 f t h p pro lJ r (\ m t e ~ t , h11 t ~ f t. h ; ~, i s (~G n 0

its special systpm definition is lost. Thp convpntion

3A. The Flow of Control 24

adopted here is to terminate every program text with a
statement consisting solely of the label

END

A transfer to END causes this last statement to be execute~

and the flow of control continues on to the next statement;
since there is no next ~tatement, the program terminates anrl
the effect is the same as if the system definition of END
had not been overridden.

f2i!~£~~!_!hg_EQ1£~Failure of the rule is not an
error and does not cause execution of the program to ceilse.
Rather, it is usen to direct the flow of control anrl to
prevent the rule which ha~ failed from continuinq execution.
When a rule fails, control is sent immediatply to the go-to
part of the statement so no further processing of the rule
is unaertakpn; in particular, the aS3ignment sp~cified by an
ass i 9 n men t r uled 0 e s not 0 c Cll r • If the s tat em en tin ',-111 .ic h
the failure occurs has no go-to, centrol passes by defa~lt

to the next statement of the program; if the go-to is
conditional (as would usually be the case) th~ failu=p
transfer, expressed explicitly or'implicitly, is taken; if
the go-to is unconditional, this unconditional transfer i~

used.

!:~ilu!L.Qf_IN.£!!1~ Thera are a variety of ways in ~1hic~1

a rule can fail. Of the rules presented so far, however,
only those ~hich call for the reading of data those in
which the va 1 ue of IN PUT is needed -- have d ny pos sibil it. y
of failing. Such a rule will fail when an end-of-qr:oup
[eccrd is read, i.e., when there are no more dat.a records in
the group to become the n~w value cf INPUT. The ability to
test for an end-af-group mark, and to direct the flow of
control if it is encountered, makes it possible to specify
that serne process is to be performed on all the records of a
data group without having to specify how many records that
might be. For example, all the rpcords of a data qroup, no
~atter how many there are, may be printed by executing the
fellowing very simple complete program text.

REAr
END

OUTPUT = INPUT .. s (READ)

Every time the statement labelled READ is executed,
INPUT acquires the value of the next data recor~. If that
value is not an end-of-qroup matk, it is assi~ned to the
variable OUTPUT ano. h~nce printeo. Sincp. the rnlp- has not
failed, control is sent hack to ~FAD and the process is
performed again. This sinqle statement, a onA-statement

3A. The Plow of Control 2 c
)

loop, will be executed repeatedly until the end-of-group
mark is encountered, causing the rule to fail. In this caSG
the assignment will not take place and the value of OUfPU1'
will remain unchangedc Control will then flow by d~fault to
the statement labelled END, terminating the proqrd~.

More than one data qroup may be processed by a sinqlp
program since the reading of an end-of-group mark does not
prevent fur~her reading of data. The following proqr~m text
prints two data qroups, the first in single-space~ format
(as abov~) and the second in douhle-spaced format (with a
blank line following each record). It prints a message at
the end of the first group.

READ1 OUTPUT = INPUT : S (READ1)
OUTPUT - tENDnOFnGRCUPaONE. ,

REAI:2 OUTPUT -- INPUT · F (END)·OUTPO'T = NULL · (RE1\D2)·
END

The onp-stat(~rnpnt loop labelled READ1 fails 1;fhcn INPUT
ac qui!' € S t. he va 1. ue 0 f the fir s t '?n d- 0 f - g r 0 11 P mar }(, hut t h p

next use 0 fIN PUT (i nthe two- s t II t e men t 100pst iH_' -;-_ i nqat
READ2l causes it to acquire the value of the first ~at~

record in tile s(~con(l qro1lp. P.ventllally a failuT:-A of TNPtJ'i'
will occur in this statement as vell J when a second enrl-of­
group mark is read, sending control to END and thus
terninating the program.

E~~lg~tiQn_nglf2~ A rule in a program text consisting
of a single expression only is called an evaluation rllle.
The statpment

INPUT F (DONE)

con~ists of an evaluation rule and a go-to. When such r\

stat(?ment is executed, the single expressi0n of th? rule is
evaluated, often causing success or failure of the rule to
be oetermined; then the go-to part of the st.atement, if any,
is Froccssed. ~he statement above indic~tes that a record is
to he read from the input file, and a transfer taken to DONB
if that record is an end-of-CJroup mark. No provision is made
for preserving the nata which is ~ead, but there are some
aprlications in which the data is not needed. The two
complete program text!"; helow provirie exampl(~s of sllch
apr1icat.ions: thp first is a proqram to count t.he number of
recor.ds i TI a qr ou panel to pr i nt the resu 1t; th e ;:,(~con r1
prints evpry othpr data record in a qroup, startinq with th0
seccnd r.ecorrl.

3A. The Flow of Control

• FROGRAM TO COUNT THE NUMBER OF RECORDS IN A GROOP.
READ INPUT : F(DONE)

COUNT = COUNT + 1 : (READ)
DONE OUTPUT = CCUNT 'cRECOBDS'
END

26

* PROGRAM TO PRINT EVERY OTHER RECOnO STARTING WITH THE 2Nn
REAr INPUT : F(END)

OUTPUT = INPUT : S(FE~D)

END

Evaluation rules are commonly used to direct the flow
of control through failure of the rule; they can also be
used to canse a variable to have a special input or output
asscciation attached to it, to define a new proc~dure, etc.,
in ways to be described lat~r; in these caSes failure of the
rule is not involved.

1~2t-g£Q£~1y£g2~ Failure of the rule may also be cause~

by the failure of a procedure call ~hich occurs within tho
rule. Snobol provides nine predefined procedurp.s, callen
test procedures, which arp. used primarily to direct the flo~

of control. Each test procedure accepts two arguments and
tests to see whether or not some specified ~elation, such as
equality, holds between them. If the test succe0ds, the tpst
prccedure returns the null value and execution of the rulp
continues. If the test fails, the rule of which it is a part
fails as well and control is sent immediatply to the oo-to
part of the statement where the failure transfer will be
taken.

lhg_Test_E!Q£g1Y££B_IQli]Ill_~n1_]IFE~Elt~ InE~T(' and
DIFFFR() may have arguments of any datatype; they are used
to determine whet.her 0[' not the values of th~ir arguments
are identical. In order to be identical, two values must b~

of the same datatype; if hath arguments are of datatype
string or hath of datatype Integer, thQn they are tested for
character for character identity. Note that the null value
is n2I identical to zero, since zero is represented by a
single character, even though the null value is consi.dered
equal to zero when used in arithmetic operations. IDENT()
and DIFFER() perform exactly the same test but r~turn

opposite resl1lts: IDEN'IO fails if its two arguments are not
identical, while D!FFER () fails if it.s two arqumcnt.~ ~l!:'~

identical. Thus the following statements are cquival~nt:

IDF.NT(STRTNG1,STRING2)
DIFF F. R (ST f< I Nr, 1 , STRI Nr, 2)

: S(SAM!~)

F (SAME)

3A. The Flow of Control 27

Spaces, of, course, must be considered as any other
character in the data, so if the rules

STRING1 = 'KINGcLEAR'
and

STF.ING2 = 'KINGaLEARo'

had just been executed, the rule with IOENT() above woul~

fail while the rule with DIFFER () would not.

It is often important, for reasons which vil! be
indicated presently, to know whether or not a qiven variable
has a null value. This can be determined by the execution of

or
IDENT (STRI NG,' ')

DIFFER (STRING,NULL)

··
··

S(EMP'!'Y)

F (EM PTY)

or something similar. Since any missing argument of a
procedure reference is assumed to be null, the simplest (if
not perhaps the clearest) way to write the above statement
i.s i.n th~ form

IDENT (STRT NG) ·· S (EM PTY)

Ih~_~§i_rrQ£~Q£r~_1~!jl~ tGT() compares two strinqs to
determine whet.her or not the first is "Lexicographically
Greater Than" the second that is, whether th~ first
!2119~f the second in alphabetical order. For example, thp
sequence

STR 1 = I ABB'

STR2 -= • ABC'
LGT (5 TR2, STR 1) ·· S (WRITE)

will send control to WBITE since AEC alphabetizes after ARA.

The string values being compared may be of any length
and may be composed of any characters; the "alphabetic
order" of non-alphabetic characters is determined by the
order of the computer's character set (see Appendix I).
Althouqh the character "5pace" has special significancp. in
most written languages, it is treated as any other character
by the computer, so its relative position within the
character set must be taken into account when alphabetizing
material containing spaces.

If either of the values being compared by LGT n is not
a str~ng, an execution-time error will result.

3A. The Flow of Control 20

Ari1hm~ti£ !£§!-__£[Q£gQQ~~~~ The rema1n1ng six
pr~defined test proceoures compare two numeric values for
the following arithmetic relationships:

J2!.Q££Q~ relati.Q1}§,hiE

EQ (X, Y) X equal to Y
NE(X,Y) X not equal to Y
I.T(X,Y) X less than Y
LE(X,Y) X less than or equal to Y
GT(X,Y) X qreater than y
GE(X,Y) X greater than or equal t.o y

All these procedures fail if the indicated relationship does
not held.

'EQO and NEO are very similar to IDENTO and DIFFER(),
except that here arithmetic identity, rather than char~cter

for character identity, is required. Thus EO(23,'+00023'}
will not fail since both arguments have the numeric value of
23, while IDEN'I(23, '+00023') ,!ill fail since charact.er for
character i..dentit y ca nnot be found bet ween t i-~O st ri ngs 0 f
different lengths. The expression EQ(NULL,Ol succeeds since
the null value and ~ero are arithmetically identical~

If either argument of an arithmetic test procedure has
a non-numeric value, an execution-time error results.

!~12IQ£~11!f~~_wi.ihin_A~H~ig!l.m~nt_B!!!£.~.:.Any nu rober n f
references to test 'procedures may be embedded within the
right-hand side of an assignment rule where they are used
not only to direct the flow of control but also to determine
whether or not the assignment is to be executen. Por
examr-le, the statement

STRINe; 1 = IDEN'I (STRING', NULL) STRING2 F' (S KI P)

specifies that STRING1 is to be given the value of ~TRTNG2

only if STRING1 has a null value when the rule is execut~d.

If it i~ non-null, then the IDENT() procedure will siqn~l

failure, sending control to SKIP before the assignment takes
Flace, so the value of STRING1 will remain unchanged.

~everal arithmetic test procedures may he u~e~ in
con j \l 11 C t. ion with 0 IH~ a 1\ 0 the r t 0 S pee i f Y a t' ~ n g~ 0 f
acceptable values. The following rule for example, allows
the printinq of a record having from 2 to 10 characters
onl y.

3A. The Flow of Control

OUTPUT = GE(SIZE(REC),2) LE(SIZE(REC),10) RF.C

29

If either of the test procedures signals failure, no output
is produced.

The fo llowing sing le statement. em ploys two .references
to test procedures to spAcify that a transfer is to he taken
to lOOP2 if the value of N is eithpr 0 or ,~ if' N has
neither value, then whatever value it has is increased by 1
and control flows by default to the next statement.

N = DIFFER(N,O) DIFFER (N, 1) N + 1 .. F' (LOOP2)

The desired condition here is that the value of N be
either 0 or 1, so there is no need to differentiate the two
cases. However, it is often necessary to know which part of
the rule has signalled failure and to take different
transfers accordingly. Consider, for instance, the p~oblem

of givinq STRI~G, if it is null, the value of the next data
record. The statement

STRING IDENT (STRING) TRI M(INPUT) F (SKIP)

viII send contrel to the statement labelled SKIP if STRING
is non-null but also if an end-of-qroup recor~ is
encountered, makinq nc differentiation between the t.~10

cases. Different transfers will usually he needed for these
two situations, so in ~hi~ case it will be necessary to
eXFress the process in two statements, each havinq a failure
tr.ansfer, such as the following:

NEXT = TRIM(!NPUT)
STRING = IDENT(STRING) NEXT

····
F(DON~)

F (SKIP)

The placement of a reference to a test procedure within
the right side of an assiqnment rule implies that the value
which the procedure r~turns is.to be concatanated with any
other right-si~e values before assignment occurs. All test
procedures return null values, so the result of such
concatenation is nev~r visible; the null value concatenaten
with any other value leaves that value unchanged.

12QR~~ Any useful proqram will contain at least one
(a nd usually many) loops which ar.e t.o he ~xecutHd rp. peatl?~l y
until some terminating condition is encountered. Th~RP loops
may consist of any number of statements (they are typically
lenger than the onp. and two-statement loops which have been
the only examples presp-nted so far), and may overlap or he
nested within one another. The terminating condition may be
that an end-of-group record is re~~ (dR in tho earlier

1A. The Flow of Control 30

examples), that some othar feature of the data is
encountered, or that the loop has been entered a certain
numcer. of times. Every time a loop is entered it is
necessary to perform some test, often with the use of a test
procedure, to determine whether or not the terminating
condition has been met; if it has, control is s~nt out of
the loop to some other part of the program. If the test is
accidentally omitted, or set up wronqly, then there may he
no way to leave the loop and the set of statements of which
it is composed will be executed refeatedly until the program
is terminatpd by the computer's operating system. When this
happens, the program is said to be in an "infinite" loop.

1QQEE-£ontrQll~d bl_n~1~__~Qn1i!i2n2~ The terminating
condition for a loop may be that a record of a certain form
is encountered in the data. If this record is an end-of­
group mark, then the test for its existence can be made by
simt:1y providinq a failure transfer on a statement in which
the value of INPUT is needed. However, it is often useful to
dividq the data int.o "subgroups," each of which is
terminated by a record having a special pattern of
characters, such as one consisting of asterisks as the first
six characters, followed by spaces. If each subgroup is to
be rrocessed separately, thAn a test must be made for this
special siqnal each time a record is read, and a transfer
taken accordingly.

IDENT() or DIFFER() can be used to make this kind of
test. For example, the following program segment reads an~

prints all data records until one with asterisks as the
first six characters and no other non-space characters is
encountered; when that record is read, control is sent to
STABS which may be the initial statement of another loop.

REl\D RECORD = TRIM(INPUT)
IDENT(RECORD,'******')
OUTPUT = RECORD

······
F (ERROR)
S (STARS)
(RE~D)

Note that provision is made for the possibility that ~

r.eccrd consistinq of six initial asterisks will not b~ found
in the group, i.e., that the program is processinq the wrong
data. This con~ition may be treated by transferring to a
stat~ment labelled ERROR when an end··of-qroup mark is rea,l.
Here an appropriate error message may be written and control
sent either to FND or to som~ other part of the proqram,
~epen~inq on the sort of tasks which still remain to be
done. Tf such an f,:rror exit wer~ nct provirl(~(\ thp,re might he
no indicat.ion from the };rogram that ilnythinq was wronq, an1
it ~iqht attempt th~ pro~essing of many groups of erroneous
data. In any event, th~ program has entered an infinite loop

3A. The Flow of Control 31

since it is persistently seeking a terminating condition
which will never be found.

1QQE~-fQn!!ol!£1_hl_~2~]!2~Arithmetic test procerlure~
are often used to control the number of times that a loop is
to be entere~ before control is sent to some other pact of a
program; that is, the terminatin~ condition for such a loop
viII be that it has been executed a given number of times.
Using the F.Q() procedure, for ex~mple, one may write a loop
to print ~ nata records, and then qo on to the rest of the
program. (If there are less than 5 records to be read,
centrol is sent to EnROE where an appropriate error message
can re pr.inted.)

LOOP Otl'I'PO'f = INPUT · F (ERROR)·COnNT = COUNT + ,
EQ (COUNT, 5) · F (LOOP}·

A similar loop may be written by using the LT ()
procedure ann embedding it within the second assignmen t
rule, as follows:

1600P OUTPUT = INFUT · F (ERROR)·COHNT = LT(COUNT,U) COUNT + , · S (LOOP)·
In this segment it has been necessary to use 4 as the

test value rather than 5 since t.he procednrE\ call is
executed QffQ£~ the value of CCUNT is incrernp.nted, ~ath2r

than after as in the parlier exam~le. In both segments,
COUNT is assume~ to have the null value when thp segment is
executed for the first time.

Information as to the number of times that somethin~ is
to b~ done may be found on a data record or comput.eo dnrinq
the course of execution, rather than being written directly
into the program text. Foe exam~le, the following segment
would cause the LOCP to be entere1 as many times as th~r.e

were characters in each data record that it was processing.

READ RFCORD :: TRI M(IN PUT) · F (ENDDATA)·N = SIZE (BECORD)
LOOP N = NE(N,O) N - 1 : P (READ)

[series of statements to process record J
· (1.00 P)·

Here the test has bp.pn placed at the heginning of thp
loop instead of at the end, and the counting has heen donp
by suct.raction r.ather than by addition. It miqht seem
clearer and more intuitiv~ to perform the prOC0.SS first ano
to test for the tnrminating condition aft0rward~ (as in tltp

3~. The Flow of Control

two previous examples). Por instance, the program text

REAr RECORD = TRl M(INPUT) · P(ENDDATA)·
N = SIZ E (RECORD)

LOOP [series of statements to process record]
N = NE(N,1) N - , · S (LOOP) F (READ)·

32

might seem to be equivalent to the one given above, in thp
sense cf al~ays producing the same result. An examination of
the cas~ of a one-character record shows that the program
apFears to work properly. In this case it would perform th~

pr~ess once, find that N was equal to 1 and then leave the
loop correctly by transferring to READ and reading in the
next record.

The difference between the two programs becomes
apparent when one attempts to process a record consisting
solely o~ spaces which when trimmed becomes null. Thp
program which tests before processing will handle records of
size zero appropriately by failing th~ first time the loop
is entered and returning immediately to read the next
r.ecorrt. The program which processe~ first and then tests
will petrOLm the process once (erronpously) and then will
test to see wh~ther the value of N is equal to 1. Since it
iszerc, the value of N will be decr~aseu by 1 to become -1,
and CCJntro 1 wi 11 be sent back into t hp loop so the proce~;s

will be performed again. Henceforth the value of N will
never equal 1, but a ser.ies of constantly decreasinq
negative numbers~ The terminating condition will thus never
be reet and the program has enter~d an infinite loop.

33

4A. PATTERN MATCHING

The process of searching a string of characters to
determine whether or not it contains one of a specified set
of strinqs is called pat.tern matching. The patte['n heinq
sought may be something very particular, such as a certain
character or a certain number of characters, or it may be
something much more qeneral , such as one of a choice of
characters or all characters preceding one of a choice of
characters. Like calls to test procedures, pattern matches
either succeed or fail, causing the rules in which they
occur to succeed or fail as well. Thus pattern matching may
be used to direct the flow of control.

lB~-£~!!~~n=aftl£hing_~gl~~ The pattern-matching rulG
consists of two main parts: the string reference, whos~

value is to be searched, and the pattern. These t~o parts
mu s t be s.e par atedin the prog ram t ext. by 0 ne 0 r m0 rp. b1 rt n k s •
The very simple pattern-matching statement

VOWELS IE' S (YES)

specifies that the current value of VOWELS is to be seareherl
for an instance of the character E, an~ that a tr~nsfer is
to be taken to the statement labelled YES if the search is
succ~~sful. If the search fails, then control ~ill flow hy
default to the next statement of the program. T.lhether th(;)
search succeeds or fails, the value of VOWELS is in no way
affected.

The pattern part may be in the form of a variable,
rather than a literal, and may have a value consisting of
more than one char.acter. For example, the sequence '

PAT =
VOWELS

'IOU'
PAT .. S (YES)

specifies a search through the value of VOWEL~ for thp.
three-character string IOU. This pattern match will succeen
(if VOWELS has the value AF,rOtJ) with the third, fourth, ano
fifth characters of t.he strinq reference being matched, anel
control will be sent to YES.

The search for the pattern always begins with the first
character of the strinq reference ano continues throuqh th~

rest of the string from left to riqht until f7'lithf'r a mfltch
is found or all char~ctprs have heen tested. Note that if
the first statement above hdd read

4A. Pattern ~atching 34

PAT 'OTTI'

the search woul~ have failed. The characters OUI are
present within the string reference, but not
indicated order.

indeef'
in the

The string reference part of a pattern-matching rule
may be any expression which gives a string when evaluaten.
Thus executing the statement

TRIM (TEXT) 'aTHEo' ·· 5 (YES)

will cause the expression TRI~(TEXT) to be evaluated, ann
its value to be searche~ for an instance of the word TH~,

surrounded by spa~es. Similarly, the use of the variable
INPUT within the strinq reference ~ill cause it to acquirp.
the value of the next data record, since this value will b~

needeo for the execution of the statement. A statement of
the form

TRIM(INPUT) 'uTHEo' ·· S (YES)

however, is not likely to be useful since (1) the value of
INPUT has not been assiqned to another variable and hancn
will be lost, and (2) no distinction is ma~e between failurp
of INPUT and failure of the pattern match.

lb£_ReE!~£~m~n!-BY1~The replacement rule specifies a
pattern which is to be sought in the string reference, an~

alsc a replacement fot that part of the strinq which ig
matched by the pattern if the search is successful. For
example, the replacement statement

"

WORD 'A' = 'y' ·· S (FOUNDA)

specifies that the character A is to be sought within the
value of WORD and that the first A which is found, if any,
is to be replaced by a Y. This new string, with Y in place
of A, is stored within the memory and assigned to thp.
variable WORD; the old value of WOBD is lost.

Note that the search succeeds, replacement occurs, and
control is sent to the go-to part of the statement as soon
as the first (leftmost) instance of the pattern is found, so
successive instances of the pattern remain unfound and
unaltered. In order to change, for p.xampl~, all A's within a
st~inq reference to V's, one would write a loop of the form

SELF WORD '1\.' ::' 'y' ·· S(SELF)

4A. Pattern Matching . :1 5

When this rule failed, any A's which had heen within the
original value of WORD would all have heen changed to Y'sw
If WORD referred to the value SASSAF~AS when the loop was
first entered, its new value would be the string SYSSYPRYS.

~he replacement for a matched substring may be shorter
or longer than the string it replaces. Thus one Bay vrit~ ~

rule to replace a double vowel by a single one, as in

WORD 'EE' = 'E'

or a single vowel by a double one, as in

WORD 'E' = 'EE'

While it is perfectly safe to write' the first of these
replacement stat.ements in a loop, so that all donblp. (oe
triFle, etc.) E's are reduced to a single E, execution of
the statement

SELF WORD , E' 'EE' ·· S (SELF)

to make all single E's into nouhle ones will send thp.
program into an infinite loop if the value of WORD contains
an E. Care must always be taken \lh(~n writing r~plac(~Jl~nt

statements in a leap to insure that the pattern is not
contained within its replacement, unless some terminatino
condition other than pattern match failure is u~ed.

Deletion of a matched patter.n may be accomplishe~ hy
providing a null value to the right of the assignmpnt sign.
Thus one may delete all E's from a strinq r.eference hy
executing a statement of the form

DELETE WORD , E! = NULL ·· S (DEL ETE)

which will fail only when no E's remain within the value of
WORD.

The replacement rule, which is syntactically a
combination of a pattern-matching and an assignm~nt rule, is
the last of the four types of rul~s in the Snobol langu~qp.

If the rule part of a statement is non-null, it must call
for either an assignment, an evaluation, a pattern match, or.
a rerlacement.

o !h~_~!t~rn~tiQn_Qrfr~tQ!~ Thn alternation operator, a
bin ar y 0 pn rat. 0 r <i P. S i g nat e ~ by t h~ s y mho 1 I t' i~j U S 0 (! t 0

specif.y alt.ernatives within a tat.tern. The pattern-matchillq
statement

4~. Pattern Matching 36

WORD , A' 'E' .. S (YE S)

specifies that the value of WORD is to be searched for
either an A or an E, and if either is found a transfer is to
be taken to Y~S.

More than cne alternation operator may be used within a
pattern, as in the statement

WORP 'A' I IE' I 'I' I '0' , 'UI .. S (Y ES)

which will succeed if the value of WORD contains any of the
five vowels. ~he search for a match proceeds as follows: the
first character of WORD is checked successively for being A,
E, I, 0, or 0: if it is none of these the second character

.i5 checked beginning with the A alternative, and ~o on. As
soon as anyone of the alternatives is found, transfer is
made to YES. The pattern matching fails only when all
characters of WORD have been examined and no alternative of
the pattern has been found.

The alternatives may consist of any number of
chatacters, not just a ~ingle character as in the examplp
above. One may search a line to determine whether or not it
contains one of a number of words, where a word is defined
as a sequence of characters surrounded by spaces, by
emf10yinq a statement of the form

L I ~! E '[1 1\[] • 'e' WORD1 '0' 1 '0' \rlORD2 '0' : S{YESl

The values of WORD1 and WORD2 may be strings of any length.
An alternative way of writing this pattern is used in the
statement

LINE '0 ' (' A' lWORD1 1 WORD2) '0' : S (YES)

Here, parentheses are necessary since the concat.p.nation
operator takes precedence over the alternation operator; if
the parent.heses were missing, the statement would he
equivalent to

LINf, 'cA' I WORD1 I WORC2 'a' : S(YES)

which is not what was intended.

I~£_~~!ig!n~r~f~1~r£~_!~!11_2n1_li~!~llYl1~Snobol has a
number of predefined procedures tor us~ solely in
contructinq pattp.rns. The pattern procec1urps ANYO anci
NOTANY () provide an efficlcnt way ofexprensing alternation,
where the alternatives are single characters only. The

4A. Pattern Matching 31

pattern-matching statement

WORD 'A' I 'E' I 'I' I '0' I 'U,· .. S (Y ES) .

which employs four instances of the alternation operator may
be written instead as

or

or

WORn ANY('AEIOU')

WORD. ANY(VOWEtS)

WORD ANY(TRIM(INPUT»

··
··
··

S (YE S)

S (YES)

S (YES)

(if both VOWELS and TRI~(INPUTl have the value AEIOU). ANY(l
accepts for its single argument any expression whose value
is a string, and returns as its value a pattern which will
match any single character of that string. Th~ patt~rn

returned by ANY() contains only a single test for each
ch a rae t e r 0 f the a r gumen t st r i n9 , noma t t ex how man y
instances of that character the string contains. That is,
the pattern returned, by ANY ('SAGAS') is equivalent to that
of '5' I 'A' I 'G' •

The companion procedure to ANY() is
returns a pattern to match any sinqle
represented in its argu~ent. Thus

NOTANY{) which
chartictec 2l2!

WORD NOTANY('AEIOU') ·· S (YE S)

will match the fi~st tharacter within the value of WORD
which is not a vowel. This match will succeed if any
character of the complete character set, exc~pt A, E, I, 0 7

or fJ. is found.

It is always better to use ANY () or nOTANY () where
single character alternatives are involved, but it will be
necessary to use the alternation operator for altp.rnatives
of more than one character. Both methods of expr~ssinq

alternation may be used together as in the statement

WORn 'YW' I 'YI' I ANY('AEIOn') .. S (GOOD)

The alternation operator and pattern procedures may he
used within r~placemp.nt rules as well as within pattern­
matchinq rules. For example, the replacement rtJl~

WORD l\NY('AETOU') = ·X'

specifics that the first vowel within the value of WORD is
to be replaced by an X; the rule

4A. Pattern Matching

WORD NOTANY('0123456789') ::: NULL

3A

specifies that the first non-digit is to be delp.ted. Fither
rule may be writtpn in a loop to sFecify that all vowels aLP
to te replaced by ~'5

LOOf1 WORD ANY('AEICU') ::: , X ' .. S(tOOP1)

or that all non-digits are to be deleted

LOOF2 WORD NOTANY ('0123456189') ::: NULL .. S (LOOP2)

lng__~Q~!1iQn~1 __!ssign~~t __QE~ratQr~ It is often
imrortant when using a pattern which "'.ill match anyone of a
number of strings to preserve the information as to exactly
what has been matched in the.sea~ch. This may be done hy
assigning the matched substring as the value of a variable
with the conditional assignment operator, a binary operator
WhOE€ symbol is a period. The pattern-matching statement

W0RD (• AW• I • AY , I ANY (' AE ~;: 0 u.» • SAVE ... F (NO)

spEcifies that the value of WORD is to be s~arched for the
alternatives, and that the' par.t of the stLinq Leferenc~

which satisfies the pattern is to be ass1qned to the
var.iable SAVE. If the value of WORD does not contain any of.
these alternatives, then the match fails and no assignment
takes ~lace. i.e., the value of S~VE remains unchanqed.

(Note that these particular two-character alternatives
must be expressed before the one-character alternatives;
once an A is found the rule succ~eds, so a search for ~y or
AW would never be undertaken if they were not the first
alternatives to be tried.)

More than one conditional assignment operator may be
used to assign the same value to more than one variable. The
statement

WORD ANYC'AEIOU') • SAVE' • SAVE2 • SAVE] : F(NO)

aSEigns the first vowel within the value of WORD to the
variables S~VE', SAVE2, and S'VE3.

If the variable OUTPUT is used, as in

LIN E (WO RD1 1 won 0 2 I W0 R03) • 0 TJ TPUT

th~ successful match will b~ printe1. Theus~ of parenthesAS
is' necessary here since the conditional assignment operator

ijA. Pattern Matching 39

asscciates itself with the single pattern elempnt
immediately to its left; if the parentheses were missing,
OUTPUT would be assiqned a value only if the value of WORD]
vas the pattern alternative which caused the rul~ to
succeen. (If that is what is intended, of course, then the
parentheses should be omitted.)

The conditional assignment operator is useful within
replacement rules in which the reatched pattern is to form

. part of the rnpl~cement. If the first vowel found is to he
reduplicated, one may use a statement of the form

WOPD ANY('AEIOU') • SAVE = SAVE SAVE !'~ (NOV 0 VI EI.)

since the value assigned to SAVE is immediately available
for \l 5 € 0 nthe rig h t sid e 0 f the r \) 1 f? • 1fthepa t t cr n fa i 1s ,
control is sent directly to the go-to part of the statement,
so no assignment can occur, either to SAVE or to WORD.

£Qn£~ten2!12n_Qt_g~itQfn~~ The concatenation operator
can he used with operands which clr~ pdtt.crns, as well as
with strings. For example, in the statement

WORD ANY (' AEIOU') 'y' = 'Y' F (NOVOWELY)

the operands of the concatenation operator are the pattern
values returned by a call to the ANYO procedure and the
string Y. The result is a pattern which will match any vowel
which is followed by a Y; if this pattern is found it is to
be replaced by a Y a16ne (i.e., the vowel is to be deleteJ).
If instead the Y were to be deleted, a statement of th~ form

W0 RDANY (, AE!0 U') • S TfV E 'Y' = Sh VE .. F (VOWF.LY)

could be used. Here only a part of t.he matched pattern (t.he
first vowel directly preceding a V) is to be assigned to thp.
variable named SAVE. Note, howevAr, that the entire pattern
must be found befor~ such assignment can occur.

It is often uspful to assign the differ~nt matchen
rarts of a string reference to different variables. Par
examfle, a pattern to search for clusters of three
consonants, and to assign each consonant to a different
variable, is emrloyed in the rule

WORD ANY (e) • C1 ANY (C) • C2 ANY (C) • C 3

(It is assumen here that the value of C is a string of
con~cnants.) ~hp ?at.tp.rn in this rule is the concatenatIon
of three patt~rn el~ments, each of which consists of a

4A. Pattern Matching 40

reference to ANYO and a conditional assigrlment.. The thrpe­
con~onant strinq may be assigned to the variable CCC as
well, by placing the entire Fattern within parentheses and
usirg one more conditional assignment operator, as follows:

WORn (ANY (C) • C , ANY (C) • C2 ANY (C) • C 3) • CCC

None of the variables viII acquire a new value unless the
entire pattern is successfully matched.

7h~__Immg~igtg_-!~~!gn!fn1__Q~~1Q!~ The- immediate
assignment operator is a binary operator whose symbel is a
~cllar sign (~). Tt is very similar to the conditional
assignment operator except that it causes the immeaiate
assiqnmpnt of any matched substring to a variable, whpthpr
the remaining elements of the pattern are matchen
successfully or not. Thus if the rule above vera rewritt~n

as

WORn (ANY (C) $ C, ANY te) $ C2 ANY' (C) • C3) • CCC

"then C1 and C2 would acquire new values each timp partial
matches occurred, but C1 and CCC would acquire new v~lup.s

only when a substring of three contiguous consonants ~as

foun~. for example, if WORD had the value ADIEU then C1
would acquire the value D when th~ match was attempt~~,

while the rest of the variables remained unchanged; if WORD
had the value CHATEAn then C1 would acquire the successive
Val\l€S C, H, and T, and C2 would acqaire t.hp. ·value H, as
repeated (hut unsuccessful) attempts werp. made to find the
pattern. Thus the immediate assignment operator may he
useful in determining how much of a pattern was succp,ssfully
matched before failure occurred.

Roth the conditional and immediate assignment operators
may be applied to the same pattern element, as in the rule

WORn ANY (VOWELS) $ SAVE1 • SAVE2 'T'

which specifies a search for any vowel which is followe~

directly by a T. (The order in which the immediatp anrl
conai tiona! assignment operat.ors occur is imma terial.) If
the pattern match succeeds, then both S~VF.1 and S~VE2 will
ref e r tot he sam e val ue, t hat eft he fir s t v0"e 1 e nc 011 nt ere (1
which occurreo directly b~fore a T. If WORD contained one or
more vowelS, hut not one occurrinq before a T, th~n the
mat.ch will fail and the value of ~1\VE2 will he un~hanqeri,

but S~VE' would acquire as successive values all vowels
within the v~lup of WORD which were encountered in the
attempts to find the pattern.

4A. Pattern Matching 41

The var-iahle OUTPU'I may be used in conjunction with th('
imme~iate .assiqnment operator to produce a printeo trace of
the progress of the pattern-matchinq operation. for example,
if the variable OUTPUT were written in place of SAVE1 above,
pro~ucing the rule

WOHD ANY (VOWELS) $ OUTPU'! • SAVE2 'T'

and the value of WORDS was the string ECCLESIASTICAL, then
the following output would be produce~:

E
E
I

"I
A

When a transfer was taken to the next statement, the valu0
of OUTPUT would he 1\ and th~ value of S1\VE2 would not haV8
heen changed, since the pattern matc~ did not succ~ed.

!llf_Eat.i~rn~[Q£~1Qr:~~_~f~l!11_f!llg_~.B.!:~!ill!-S P,\ N () (\ no
BREAK () ar~ procedures \fhich match not just a sillqlp
character but ~ string of characters of indefinite 10.nqth.
SPAN () returns a pattern which l'latches a string cornpos(:'1
solply of the characters specified within its argum~nt. For
examrle, a string consisting of one or more vowels may hp
specified by the pattern

SP 1l. N (, AEI 0 U ')

BRFAK() returns a pattern which matches a string ccmposp.~ of
any characters ~!~QE! those specified in its arguffiQnt. Thus
a string consisting of anything hut vow~ls may be specified
by the pattern

BREAK ('AEIOU')

Both SPARe) and BFEAK() mu~t find a character from
their argument strings in order to succee~. ~PAN() will
match that character along with any other acceptablp
characters which are contigucu2; BREAK{) will match
everything up to such a character, leavinq the "hreak
character" it~elf unmatched.

Note that the pat.tern returned by BREAK () may match t.hp.
null value, as in

4A. Pattern Matching 42

wonD
WORD

-= 'IDLE'
EREAK('AEIOU') • SAVE

Here SAVE will be assigned the null value since BREAK()
matches all characters preceding th~ first vowel, or in this
case no characters. SPAN() can never match the null value
since it must match at least one of the chaLacters of its
argument.

SPAN() and BREAK() are often used together to break
nata into significant units, such as words. If a word is
defined as a string of characters terminated by any numbe~

of spaces, perioos, or commas, then the following progran
segment can be used to assign to the variable WORD each new
wcrd cf the data.

READ
LOOP
+

LInE -= TRIM(INPUT) '0' : P(DONE)
LIN E BP. EAK (, rt. , ,) • W0 RD SPA N (' c. , ') -= NULL

: P (nEAD)
[sequence of statements to process WORD]

: (LOOP)

Tn the replacement statement labelled LOOP t

DREAK('n.,') matches all c~aracters until a space, perioo,
or ccmrna is encountered. The sequence of characters which
have been matched is assiqned to thp variable wnRD.
SP~N('o.,') will then match thp character' whic~ caused
BREAK('o.,') to succeed, and any other spaces, per.ioos, or
ccmnas which may be contiguous. This entire pattern is thAn
replaced by the null value (removed from LINE), the value of
WORt is processed in some way, and control spnt back into
the loop again. The replacement rule fails only when no more
words remain to be processed and a new value for LINE is
read in. Note that a space has been concatenated to the
tri~med value of each data record to insure that
BR'E AK(•n. , .) will be a bIe t 0 fin d a t1 break c hat' act. er" a t the
end of the last word, and SPAN ('0., " will have at least one
character to match.

lh£_£~ti~!n__~£OC~1~rf __LENll~ The patter.n proc~dure

LENO accepts any non-negative integer arqument, and return~

a pattern to match as many characters as its arqnment
specifif.!s. Thus LEN 0 matches strinqs of predict.able lenqth
but unpce-dictable content, while BREl\K() and SPAN() match
strings of predictable content but unpredictable length.

lENO is us~ful between two pattern elempnts to spp.~ify

the exact number of characters which must lie hetween them
for the match to succeed. Thus the search for four-character
strinqs within parentheses miqht. be specified hy th(..'

4A. Pattern Matching

statement

LINE '(' LEN (4) • INSIDE f)' F (OUT)

43

Note that the strings matched by the three concatenate~

pattern elem~nts must be contiguous for the match to
succeed. Thns the above rule does not mean "at least four
characters between par!~ntheses" but "exactly four." If this
rule is successful, the fir-st string of four characters
founrl hetween parentheses ~ill be assigne~ to the variable
INSIDE.

LEN () is often used at the beginning of
match an initial field of the data,
identification nurnh~r. The statement

pa tt ~rns to
such as an

LINE LEN (10) • IDNtJMBER LIN (40) DATA .. F (SHORT)

assigns th~ first 10 characters of LINE to the variable
IDNUMBFR, and the next 40 charactprs to the variable DATA.
~he rul~ will fail only if LINE contains less than SO
character-s.

Statements of the form

LINE LEN(10} • IDNOMnER ,~, .. 5 (ALIllE)

are often erroneously used to ~pecify a search for lin0s
with A as the elev~nth character. Whil~ it is trup that all
such lines will he found by the above rule, many other lines
may be founrl as w~ll. The rule will succeed if a string of
10 characters prece~ing an A can be found anywhp.rp. within
the value of LINE, not necessarily in initial position.

!he_a~~llDBlt_££~£2~rg~The ANCHORO procerlure may he
useli to Hanchor" all searches so that they succeed only in
initial position. In anchored mode, if'a pattern does not
match heginninq with the first character of thp. strinq
reference, failure is recorded immediately and no further
pattern searching occurs.

The normal, unanchored, mode of pattern matching can h0
chanqed to anchored mode by executinq an evaluation rule of
the form

f\NCHOR ('ON ')
or

ANCHOR('XXX')
or

ANCHOR (vnWET.S)

4A. Pattern Matching 4U

or any other rule in which the ANCHORO procedure is called
with a non-null argument. Executing the sequence

ANCHOR('ANCHOPITE')
LINE LEN{10) • IDNUMBER 'A' .. S (A LIN E)

would cause a transfer to ~LINE only when the eleventh
char.acter of LINg was indeed an A.

The anchored mode remains in effect until another rule
is executed in which the ANCHOR(l procedure is called with
an argument having a null value, such as

ANCJ-lOR()
or

AN~HOR(NULL)

The original unanchored mode of pattern-matching is then
restored.

11~_£~iigrD_EIQ~ed~£f~_IA]jl-~nQ__E!A~lL~ The pattern
procedures TAE() and FTAB() specify pattern matching not in
terms of character contEnt or of length, hut in tprms of
position within the string reference. Both TAB () and RTAB ()
accept a single argument which must be a non-neqativ0
integer ana return a pattern to match all the characters up
to that position within the strinq reference, matchinq as
always from the left. The difference between TAD() and
RTAD 0 is tliat they use opposite conventions for numh8rinq
the string positions (and thus for interpreting theic
arguments): T~B() works in terms of numbers counted from the
left., RTAB () in terms of number.s counted fr-om the right, as
shown in the following charts:

Por TAB() •

£h~£f!£!.Q!':' 1 3 6 1
I I I I

§iring_£22itiQnl o11 I 3 1617
I I 1 11 I 1 f I
c A M Y L 0 T

For RTl\B{) ,

£h~J;.1£.t~!l 7 fi 3 ,
1 J I I

.§.!rl.!l.9:_.E.Qsl!i.QI!:' 1161 3 I 1 , 0

I It' 1 I 1, I
c A M Y L a T

4A. Pattern Matching 45

Notice that althcugh there is no zero-th character,
there is a zero-th string position -- just before the first
character or ;ust after the last one, d~pending on wh0thcr
TAB() or RTAB() is heing used. This prev@.nts confusion wh~n

thinkinq about. characters in terms of their strillq
r-ositions: TAB (2), "everything up to string position 2, It

matches the first two characters; RTAB (1), fte\ipryt.hinq up to
string position 1 counting from the right," ma+chps all the
characters hut one. Although the arqument of nTAB() is an
integer to he used in counting from the right, this does llQt

. imrly that pattern-matching is done from the riqht; pattern­
matching always proceeds from the left.

TAB () and RTAB () lTlay be useo for breaking up strings
intc fixed fields; the rul~

LINE TAB (15) • ID TAB (70) • TEXT

assigns the first 15 characters of LINE to In, and tho next
55 characters (those remaining up to strinq position 70) to
TEX1. This is exactly equivalent to the rule

J., INE LEN (1 S) • IO LEN (Slj) • TEXT

If the first field were of varyinq length, terminate~

by a srace, then

LI tIE RRE AK (' [] ,) • In' 0 • TAB (70) • T EX rr

would assign everything up to thA first space to In, and all
characters after the space hut before string position 70 to
TEXT. Note that this is n2! equivalent to

LINE RREAK('o') • ID '0' LEN(70) 0 TF.XT

in wh ich all c ha raeters up to thA first space a r~ assign p ~

to the variable ID (as before) but a full 70 characters
following the space are assiqned tc the variahle TF.XT. TAB()
ffiay match strinqs of varying length endinq at a definite
string position, while LEN() will always match a definite
number of characters ending at varyinq str.ing positions.

R7AB() can be used like TAB() f~r patterns in which tho
string position tprminating the match is better expr~sse~ as
a count from the right rather than from the left. PT.~d3 (0) is
particularly uSAful; it will always match evprythinq from
the current. position in a pattern sparch up t.o the p.nd of
the stri.llfJ - t}1f~ firemainder tl of the st.ring after any othpr
pattern elements have been m~tchp.d.

4A. Pattern Matching 46

Hoth TABC) and RTAB() can match the null value~ but if
either attempts to match up to a string position to the left
of ene which has already heen matche~ by a preceding pattern
element, or a string position which does not exist (becausp.
the string is too short), the pattern match will fail.

l.h~_£attg,.!!1-f!.Q~f!.1!r.~~_PO~L!lll!1__]£Q~ll.~ The pattern
procedures POSt) and RPns() return patterns which match no
characters:lt all (the nnl1 vallIe); they match only thp
singie string positions specified by their single non­
negative integer arguments. POS () uses the numherinq system
of TABO, RPOSO of R'I'ABO. Their use is to restrict
successful matches by other pattern el~ments to certain
Fositicns in string references; this provides a mor.~

flexible form of "anchorinq."

A pattern which heqins vith POS(O) is anchored in the
usual way. The rule

LINE POS (0) '******'
will succeed only if the value of LINE contains ast~risks as
its first six characters. (The advantage ovp-r t.urninq on the
ANCHOR () procp.dure is that the restriction applies t.o this
sinqle rule only.) Similarly, the rule

LI NE FOS (7) '******'
will succeed only if the value of LINP contains asterisks as
characters 8 throuqh '3.

RPO~() permits the same kind of anchoring, counting
from the right; the rule

LINE ,**.*.*, RPOS (O}

will match only if the value of LINE ends with six
asterisks, and

LINF. POS (0) '******' RPC~ (0)

will succeed only if the value of LINE is precisely a six­
character string of asterisks. That is, the ahove pattern­
matching rule is ~quivalent to the evaluation rule

IDENT (LINE, '***••• ')
!hg_.f.s.!.!~!.n_£!Q~.d.YI:~ __.!BIH!QJ1.:.. ARBND () is t he on 1 y

pattern procedure which accepts a pattern as its ~rgumpnt.

It returns a pattern which vi 11 match zero or more

4A. Pattern Matching 41

occcrrences 'of the pattern given in its single argum~nt.

Note that ~atchinq zero occurrences is the same as matching
the null value'; since this i,s always the first. choice for
the ARRNO() procedure, a call to it always succeeds. ARnNO ()
will na tch as man y occurrenC,~5 of the spec if ied ~a ttern Ci S

will cause th~ remainder of the pattern to succeed.

A string is a simple form of a pattern, so the arqum~nt

of ARENO() may be a sinqle character ot' characters. A
patter.n to match zero or morp. A's may be specified as

ARDNO ('A')

This differs from

SPAN('A')

in that the SPANO procenure must alwrlys match at. least one
character, so t.hepat.tern which is the value of SPAN('At)
matches .Q!l~ vr lPore A"s insteaCl.

A patt~rn ~hich will match any number of charactpcs,
includi.ng nor~e, enclosed within parenth€'5e~ (rat.her t.han
exactly u, or seme othp,r numh~r) can he speGifi(~d wit.h the
ust? of ARRNO() as follows:

LINE • (f ARENO (LEN (1») INSIDE ')' .. F (NO P" REN)

This pattern will match strings of th~ form

()
(1)
(AB)
(XXX)

'T'he null value or ,the characters within the par.enthes~s \fill
be assigned to the variable INSIDE.

A mo~e complicatprl illustration of the Qse of ARBNO()
is provirled by a consideration of the following set'of
sentences:

The dog ran.
'T' he 0 1~ rl og ran.
Thp old, gray rloq ran.
'T'hp ol~, gray, harking dog ~dn.

The sirildrity among these sHntences may be charact~rized in
tDrm~ of some pattern~hich woul~ succeed when aprli0~ to
any of them. Such a pattern may.be written with the \lS~ of

4A. Pattern Matching

ARBNC() as follows:

'THEe' ARBNO(BREAK('o,'1 LEN(1» 'DOGt1R~N. '

4R

Wh~n this pattern is appli~d to ~he fi~st ~cr.te~ce, th0
ARBNO () pro(;edure matches zero instances of its argument, or
the null value, since th~ literal strings within the pattern
acccunt for the entite sentence. In the second sentence,
~RBNO() matches one instance of its pattern, the strinq
OLDo. In the third sentence, ARRNOO matches three instances
of its pattern, ~he string OLD,oGRAYa. This is threp.
instances since BREAK() first matches everything up to the
comma, then up to the space following the comma, then up to
the space following GRAY. In the last 5entence, ARRHO(}
matches five instances of its pattern, the string
OLD,cGR~Y,oBARKINGn. 1he pattern matching in the last
sentence occurs as follows:

(1) the opening literal matches to begin with an~

AFBNO() matches no instances of its pattern (or the null
value); but then the closing literal canna': be matched, so
an instance of the ARRNO() pattern is sought with

(2) BR1~AK () matching e'tet"ything \lP to the comma (t.he
str.ing OLD), and l~N 0 mat.ching the comma; when t.he final
literal cannot b~ matched, successive instances of th~

ARBNO(l pattern are trie~ with

(3) BFE AK 0 '" ateh i n9 e v~ r yt h ing \l P tothe b la nk (t h P.

null value) and LEN () matching the blank, then

(4) BREAK() matchinq ev~rything up to the next comma
(t. h€ s t r in 9 GRAY) and LEN () mat.chi ng the com ma , then

(5) BREAK () matching everythinq up to the following
blank (again the null value) whi.le LEN 0 matches the blank,
and finally

(6) BREAK 0 matchinq everything up to the next blank
(the string B!\RKING) and LEN () matching the blank. At this
point the final literal can be matche~ and the entire
pattern matching is completed.

The Sf' S uc c e s s i vf' a t t P. I!\ Pt s by ARnNO () to ma t c h t. h p

numher of instanc0S of its arqument which will cause th0
remainder of the pattern to ~uc~eed could be ohserve~ by
us i nq the i mme d i a t~! ass i q n men top era t. 0 r inc0 n j unet ion \if i t. h
the variable OUTPUT as descLiheo earlier.

4A. Pattern Matching 49

A~iqni~g_~Pal!~£n~__!Q__Vari~Q!g§~ Patterns may bo
assigned as the values of variables ;ust as stcings are
assigned as the values of variables. This may be done with
an assignment rule of the usual form, such as

PAT = 'IOO'

DOG = 'THEa' ARBNO(BREAK('o,') LEN(1» 'DOGoRAN.'

or

or
Tn n~",...... v. en.1. = LE N (') T ""'" V nT.'n• oJ. U L1 U n J;; J:' l\ LF.t~ (40; T\1l"'"

• U 1\ I. 1\

7he variable which refers to the pattern l rather than
the pattern itself, may then be used within th~ pattern part
of a rule as in

or

or.

VOWElS PAT

LINE ID.PAT

DOGLINF. DOG

··
··
··

S (YES)

P (SHORT)

F (NODOG)

When these statements are executed, the current values
of PAT, ID.PAT, and DOG are ohtained; thus the pattern
matching and the conditional assignment are performpd
exactly as if the patterns themselves were expressed.

1he value of the variable PA~ is of natatype strinq,
but it may be usei as the pattern Fart of a pattern-matchina
rule, as inrlicated at the very beginning of t.his chaptp.r,
since a strinq is a trivial form of a pattern. The values of
ID.rAT and DOG are of datatype Fattern, since they arp
concatenations of value~ of calls to procedures which rpturn
patterns. Any expression contai~ing a reference to a pattern
proc~oure, an alternation operator, a conditional or
immEdiate assignment operator, or a def~rred evaluation
operator (described below), has a value of datatype Pattern.
The values of such expressions cannot be assigned to th~

special variable OUTPUT, since only strinqs can be printed.
(Ways of printing the value of an expression of datatype
Pattern are indicated in AFpen~ih ~, section rI.B, s.v.
"PRC10TYPF. () It.) The variabl~s ID. PAT and DOG are of cou\:S0.
in no way restricted to having only Patterns as their.
values, but. may be assiqned values of any datatype in other
farts of the proqram.

If a pattern occurs within a rule which is to he
executed mor~ than cnce, or if the same pattern occurs in
more than one rule, a consid~ratle incrpase in program
efficiency Cdn he oct.ained by assigning tho P!lt.tern as t,hp
vi\ 111 (} a f a va ria b1e • The us Po 0 f a va ria h1e with:l nth ~! r u 1. ~

qA. Pattern Matching 50

makes it unnecessary to construct the pattern every time the
rule is executed.

When a pattern is assigned to a variable, as in thp
rnle

ALTPA T == X 1 y

any variables occurring within the pattern (X and Y abov~)

are evaluated when the assignment rule is executed. Thus if
X had as its value the string A and y the strinq S, thn
value of ALTPA1' aft~I:' the above rule had been executed wO\llrl
be equivalent to 'At 1 'B' •

There are often applications, however, in which one
wants the variables of the pattern to be evaluated only whpn
the pattern is used in a pattern-matchinq rule, not when th~

assiqnment occurs. For example, a loop to search the value
of ~ORn for one of two sUbstrinqs, each to be read from th0
input file, may b~ written as follows:

LOOP' x =
y -=
WORn

TRIM {INFUT}
TRIM (INPUT)
X I Y

..·····
F (DONP.)
F (ERRO~)

S (FOHN D) F(LOOP1)

Since the efficiency of the program can be incceas~~ hV
using a variable which r~fers to a pattern, rather than thp
pattern itself, one would like to be able to write the loop
as

LOOP2
ALTPl\T -=X 1 y
X :: TRIM(INPUT)
Y -= TRIM (INPUT)
WORD AL'1'PAT

"·····
F (DONE)
F (ERROR)
S (FOU ND) F(LOOP2)

If this is done, however, the loop will not have the 5am~

meaning as before. !he new values of X and Y which are
acquired from the input file on each iterat.ion of the loop
will not affect the value of ALTPAT; rather its value will
remain unchanqed at 'A' 1 'fl' (if A and D were t.he values of
X and Y when the assignment occurred) •

.Ihe_De.f~.Iren .£:.!l!!1L2 t i .Q.n Q.E2f:2!.Qr~ The de fer r (\ t~

evaluation operator, a unary operator Whose symhol is an
asteriSK (*), may be used within pattp.cns to take car~ 0f
the above situationn It may be written dirpctly h~for0 th0
na m€ 0 f a va ria b1 (~ to i ndieate t hat its e val ua t ion i s t 0 tH~

deferred until its value is needed during a pattern-matchin\l
oppration. For instan~e, the as~ignment rule

4A. Patt€rn Matchinq

AL TPA'I' = *X I *Y

51

may be used to indicate that both X and Y are variable~

which are to be re-evaluated each time a pattern-matching
rule is expcuted in which ALTPA'l~ is used within the pattern
part. Thus the sequence

ALTPA~ = *x 1 *y
LOOP) x .­

y­
WOLD

'rHI M(INFU"r)
TRIM (INPUT)
ALTPAT

······
F (DONE)
F (ERROR)
!:;(FOUND) F(LOOP3)

will produce the same r~sults as the LOOP' example above,
but more efficiently.

The unary * operator is also useful in patterns in
which the value of cne pattern elpment is dependent on thA
successful match of an earli.er element of the sam{) pattern.
Consi~er, for ~xample, the prohlem of searching ~ wor~ to
detGrmine whether or not it contains two identical
contiguous vowels. This pattern may be expressed using the *
operator as

VOW2PAT = l\NY(VOWFLS) $ V *v

Nhen this pattern is used, as in the statement

WOPD VOH2PAT • c:: I V l:'c::'\• ..., \ ~,.J I

it specifies a search'through the value of WORD for any of
the five vowels, imme~iate assignment of the vowel founi to
the variable V, and then a search of the next character for
another instance of that same i6wAl.

A more genAral pattern in the same vein is one which
searches for two i1entical contiguous characters. This may
be ex press eel as

CH~RPl\T = LEN (1) $ CHAR *CHAR

anrl works as described above. Without the use of deferred
evaluation, these patterns would be cumbersome to definp..

The unary * opprator may hf~ 11541'1 only hf'fore names of
va r i (l 11 10 ~ , II () t 1J (' for p r (~ f P. r (l n('~ ~ 5 top ~ t. t. n r n p r ()c ('l (1 u r. p ~~ • l\ n
oxpr(~ssion compo~·;p(l of a dp[tcrec1 evaluation opp.rator and a
variable name is of ~atatyp~ Pattern an~ so m~y b~ used only
where a pattern value is apprcpriatA: henc@ such ~n

ex rression ma y not be used as the al'yument of an'f of t hf~

pattern procedures except AHBNO(). Thp loop

4A. Pattern Matching 52

LOCP4
ARDPAT· = '5' ARENa (*X) •
x = TRIM (INFTl'I')
WORD ARBPAT

SAVE

····

, S'

F (DONE)
S (FOUND) F(LOOP4)

~pecifics a 5carch through wonn for zero or more instances
of whatever strinq is specified on the next data recoLn,
bounded by an S en either side, an~ the assiqnrn~nt of thp
sUbstring ffiatched hy ARBNO() to the variable 5AVE o If the
search fails, another data record is read, causing a
different pattern to be sought.

1: he212~!~1~2.t1~!:lL_1,g!ia hl!H~_!B~_itlln.__EB~.:. Th erear p

six variab]es which have predefined patterns as their
values, assiqned by the Snobol system; thes~ are the only
six variables in Snobol which do not have the null value
when execution of a program. beqins. The values of thes~

variables may be changed in a program by assigning them new
values in the usual way, but. then of. course the predefiner1
va 1 nes a re lost. The 5i x special pa t.tern v ar iahIes ar~ AR R,
REM, BAL t FAIL, FENCE, and ABOBT. Only ARB anJ REM will be
discussed here. (The remaining fO\lr pattern variables are
d~scribed in Appendix B.'

The variable APB has as its predefined value a pattern
equivalent to ARBNO(T,"SN(1») - that mo~t arbitrary pattern
which will match the null value or any string of characters.
ARB r like ARBNO (LEN (1», matches the longest str.inq of
characters left for it by surrounding patt~rn elements; thus
the Fattern to match any parenthesized string could have
been written as

LINE t (' ARB. INSIDE ')' ·· F (NaPA REN)

Execution of this statement would cause the variable INSIOE
to te assigned the zero or more characters occurring betwe~n

a pair of parentheses.

The variable REM has as its predefined value a p~ttern

vh ich wi 11 rna tch "a11 th e rem aining (n on e- or-more)
characters." Another pattern equivalent to this is RTAB (O~ •
For example, a statement to match all characters after the
sixth may he written as

LINE LEN (6) REM A6 ·· F (NOTSI X)

Execution of thi~ statement will cause LFN(~) to match the
fi+,st six characters in LINE and will canse all remaininq
characters to he ~ssigned to th~ variable A~. If the value
of LINE is exactly six charact~rs lcng, the pattern match
will ~ucceed and the variable A6 will be assigned the null

4A. Pattern Matching 53

value. If the value of LINE is less than six characters long
the pattern match will fail, A6 will not acquire a new value
and control will be sent to the statement labelled NOTSIX.

Since the predefined pattern values of both ARB ann REM
are equivalent to patterns 'Which may easily be writtpn in
other ways, ARB an~ REM may be regarded merely as convenient
prpoefined abbreviations for longer pattern specifications.

!_g!Qg~~~_!Q_IlIQ§!£2tep~ii~!n=~gtching~ The program
text provided helow reads an indefinitely long text which
has line numbers in the first six positions of each data
recor~, and wor~s occurring in free form, but never hroken
acress records, in the remaining positions. A word is
definpd as a string of characters followerl by a space or a
punctuation character. Any numt~r of spaces an~/or

punctuation characters may occur hetween words (and hefore
the first word on a card). The program looks for ~ords

within the text which begin and pnd with the same character
(one letter words excluded). If such words are found, they
are printed following the line number of the record in which
they occurred. Thus the two records

000001
000002

EFFICIENCY IS IMPORTANT EUT
E1.EGANCF. IS TO BE DESIREe

would produce the output

000002 El,EGANCE DESIRED

since the first line contains no words which beqin and en~

with the ~ame character, but thp second line contains two.
All pattern~ are assigned to variables for the sake of
efficiency.

* FBOGRAM TO FIND AND PRINT ALL weRDS THAT
* BEG!N AND END ~ITn TH~ SAME CHARACTERS

** SET UP THE PATTERNS NEEDED FOR THE pnOGRhM

* PUNe =
WORD. PAT
ID.PAT =
SAME. PAT

'0.,:;'
= BRF AK (P U !l C) • WaR D SPA N (P TJ NCl

LEN (6) • ID (SPAN (PUNC) , NfJLI.)
= POS(O) I.EN{', $ CH RTAB(1) *CH

** READ THE NEXT RECCHD OF THE DATA - APPEND A :'PACF.
r,ETI.TNE LINE = TRIM (INPlJ~\ lei : P (END)

** I1EMOVE In NUMREn _. If;NonE RrCOPD~ sHORTER 'l'Hl\N () CHi\RS
LINE 10. PAT = NULL . : F (GETLINF,)

4A. Pattern Matching

IF NOT,

F (GRTWORD)..
SF E I F THIS W0 RD HAS SAM E FIR STAN 0 I.ASTen ARS ­

!REN GET 1HE NEXT WORD
WORD SAME. PAT

• eFT THE NEX1 WORD - IF NO ~OPE WORDS, CONSIDER PRINTIMG
GETWORD LINE WORD.PAT = NULL : F(PRINT)
•
*
*
*• WORD TO BE PRINTED - APPEND IT to THE OUTPUT LINE

OUT = OOT 'oeco' WORD : (GETWORn)
•* PRINT VALUE OF OUT IF IT CONTAINS ANY WORDS
• PRECEDE THE WORDS EY THF APPROPRTATE LINE NU~RER

PRINT OUTPUT = DIFFER(OOT,NULL\ ID OUT : P(GETLINE)

** IF NECESSARY, ASSIGN OUT A NOLL V~LUE BEFORE PROCEEDING
OUT = NULL : (GETLINP.)

END

SA. INDIRECT REFE~ENCING

The fact that a single variable may b@. used to refer to
a number of .different valu~s durinq the course of program
execution makes it possible to write a general rule vhich
can have the effect of many specific ones. For example, thp.
single rule

OUTPUT = WORD

specifies in general that the current value of the variable
named WORD is to be printeo, whatever that value may b~. If
the above rule is part of a loop in which WORD is being
assigned a new value every tim~ the loop is entered, then
the rule sends different specific characters to the output
file every time it is execut~d. without this ability to
express a process in general terms rather than in specific
ones, no useful programs could be ~ritten.

The ability to generalize is further extended in Snohal
by the use of indirect referencing. This operation allows
one to specify a variable without writing its name into the
program text; rather, one specifies a variable hy writing an
expr~ssion whose value is a variable. Just as WORn in the
rule above may refer to a numrer cf different values durinq
the course of program execution, so this expression
involving indirect referencing may refer to a number of
different variables during the course of the program, each
variable's value changing independently. In neither case do
the Epecific values need to be known when the program text
is written. Hence the use of indirect referencing allows
anctber level of generality to he introduced.

1h~-1nQl££~i-RefeI~n~inS-Q~~£2!£~~Indirect referencing
is accomplished by means of the indirect referencing
operator, a unary operator whose symbol is a dollar siqn
($). ~his operator takes a single string-valued operand (or
one of datatype Name as described in Chapter 7) and returns
as its value the variable named by that string. In the
sim~lest case, the operand is a literal as in the rule

OUTPUT = $'WORD'

which produces the same effect as

OUTPUT = WORn

Both viII cause the current value cf the variabl~ WORD to hp.
prir.ted since the variable return~rl by the $ operator above
is the one vhos@. name is WORD. There is no advantage to

SA. Indirect Referencing. S6

using the $ operator in this way, since it is simplpr to
write ~ORD than to write $'WORD'.

HoweveL, there are many vari~bles which cannot he
referred to hy writinq their names in program texts 5inc~

they consist of strinqs of characters which are not
identifiers. As indicated in Chapter 2,

1 RHYME •• VOW ELS TEXT/3 P-\'-C

are all the names of variables, but they are not valid
representations of these variables within a program text.
These variables may be represented with the use of the $
operator, since they are, respecti~ely, the values of the
expressions

$'1RHYME' $' •• VOWEtS' $'TEXT/3' $'P-V-C'

Although these expressions are useful in a way that $'WORn'
is not, they introduce no generality into the program since
each specifies a singl~, fixed, variable.

Generality is introduced when
operator is some string-valued
literal. Thus the rule

OtJ"t'PTJT = $WORD

t.he operand of
expression other

the $
then a

can cause the values of different variables to he printed
when it is executed at different times, since the variable
whose value is to be printed depends on the current value of
WORB. If the rules

WORD = 'SASSAFRAS'
and

SASSAFR~S = 'TREE'

have been executed, then execution of the rUle

OUTPUT = $WORD

will cause the characters TREE to be printed. First WORD is
evaluated to yield the string SASS~FRAS; then the $ op~rator

returns the variable named by that ~trinq. Thus the effect
is as though

OUTPU! = $'SASSAFRAS'

or, equivalently,

SA. Indirect Referencing.

OUTPUT = SASSAFRAS

had been executed.

Similarly, the rule

$VOWEL = $VOWEL + 1

can cause the value of many different variables to be
incremented by 1. If the value of VOWEL is the string A,
then the rule is equivalent to

$'A' = $'A' + 1
or

A = ~ + 1

but if the value of VOWEL is a different vowel, say E for
example, then the rule is equivalent to

E = E + 1

instead. Thus executing the same rule at different times in
the program may result in incrementing the val.ue of
different variahlps. ~ sinqle rule of this form could b~

used to count how many of each vowel occurred in a text.

(Notice that a variable returned by 'the indirect
referencing operator is treated in r.ne executlon of rules
exactly like a variable whose name is written in thp. program
text; variables occurring to the riqht of an assignment
sign, or within a pattern or a Rtrinq referenc~, must hn
Avaluated when the rule in which th~y occur is executed.)

!hg_QEg~~n1-2f-thf-Indi~~Q1_Bef~~n£!llg__QE~A!2!~ The
operand of an indirect referencing operator may be an
eXFression of any complexity; the only restriction is that
this expression yield a non-null string (o~ a Nam~ when it
is Evaluated. Thus th~ operand of a $ operator may itself
contain one or more $ operators (as in the expression
$$CnRRENT), as lonq as the variable returnert by each inner $
operator refers to a valuQ which is a string. These nesterl $
operators, like nested procedure calls, must be evaluated
frcm the inside out since the varia~le returned by an inner
$ iE neederl to form the operand of an outer $. For example,
if the assignments

cnRR~NT = 'VOWFL'
and

VOWEL = 'A'

SA. Indirect Referencing.

have been e7ecuted, then the rule

$$CURRENT = $$CURRENT + ,

is equivalent to

A = "+ 1

SA

The evaluation of the rule involving double indirect
referencing proceeds as follows: first the value of CURREN~

is determined, ~roviding the strinq VOWEL as the operand of
the inner $ operator and making the expression $$CURRFNT
equivalent to $$'VOWEL'; when the inner $ is applie~ to the
string VOwEL the variable VOWEY.· is returne~, makinq
$$'VOWEL' equivalent to $VOWEL; the cuter $ is then applied,
giving $fA', in turn equivalent-to A, as ahove. ?'xamples of
how multiple indirect referencing can be useful are proviJed
by two program texts given at the end of this chaptero

Similarly, a referenc8 to any procedure whi~h returns a
string as its value may be used within the operand. ~s a
sirotle example, the rule

$5IZE (WORD) = $STZE (WORt) + 1

could be used in a leap, analogously to the rule

$VOWF.L = $VOWEL + 1

above, to count how many words of each length occurred in a
text. If the current value of WORn at some point durinq
execution is the nine-character string SASSAFRAS, then the
above rule is equivalent to

$'9' = $'9' ~ 1

Thus the variable whose name is 1 would be assigned the
count of the one-character words, the variahle named 2 the
count of the two-character words, etc. Although the names of
these variables may not be written in the proqram text, thp
variables may be specified by means of indirect referencinq,
since the $ operator may be applied to any string of
characters to return the variable namen by that string.

The null value may not be used as the operan~ of the $
operator since the name of a variabl(3 must he at le;\st onp
character 10n'.1. It. is d common mistakp, howevpr, to HS0. a~;

the operand of the $ operator a variable which at some timp
clurinq the course of 0xecution will hu·.;e a null valne. Such
an erIor cannot occur in the example above, sin~e therp is

5A. Indirect Referencing. 59

no w~y for the operand to be null. If WORD has a null valu~v

then SIZE(WORD) returns the integer zero as its value. Hence
the count of all null values is referred to by the variable
whose name is O. (If WORD has a value which is not a string,
then an execution-~irne error will result when the SIZF()
procedure is called, before an attempt to apply the $
operator can be made.)

]_~!QgI~~_!Q_£IQ~tt~£_E_~h~£~~!2!-£QQni~As an example
of the power of in~irect refer~ncing, consider this simple
character-counting program, which prints out a table qivinq
the number of times each letter occurred within a t0Xt.

* P~OGRAM TO MAKE A CHARACTER COUNT
* SET UP CHARACTER-FINDING PATTBRN

CHAR. p!\'r :: lEN (1) • CHAR

IF LETTER DIn NOT OCCUR, GIVE IT THE VALUE ZERO, NOT NULL
$CHAR =: IDENT ($CIO.R ,NULL) 0

(LOOP1)

F (EN D)

F (OUT).

··

** RE\D IN THE DATA
READ LINE = TRIM(INPUT)

** FIND THE NEXT CHARACTER - ASSIGN iT TO THE VARI1\BLE CH!'P
LOOP1 LINE CHAR. PAT = NULL F(RRAD)

** ADD ONE TO TIlE COUNT FOR THAT CHJlH~CTER

INC $CHAR = $CHAR + 1 :

** SPECIFY THR ALPHABRT FOR RECOVERTNG COUNTS
anT ALPHA = 'ABCDEFGHIJKLMNOPQR~TUVWXYZ'

** GET THE NEXT LETTER WHOSE COONT TS TO BE RECOVER~D

* ASSIGN IT TC THE VARIABLE CA~R

LOOP2 ALPHA CHAR. PAT = NULL

*
*
** PRINT LETTER ~ND ITS COUNT

OUTPUT = CHAR 'DODO' $CHAR
END

·· (LOOP2)

Output from this program would be a list of the form

an~ so on.

This proq ram uses the pat t ern w~1 i chis the val uA 0 f
CHAR.PAT to assign each sl1ccpssivp. character of the t(~xt to

SA. Indirect Referencing. 60

the variable CHAR; indirect referencing is then use~ to
return the variable named by that character. Depending on
which character has been found, the rule part of the
statement la~el1ed INC might be equivalent to

A ':: A 4- 1
or

B = B + ,
or

$' , , = $, , , + ,
or whatever..

~hen all the text has been rea~, printing of the counts
begins. This is done with the use of the variable ALPH~,

whose value is a string containing all the characters for
'o'fhich connts are to be printed, giv~n in the desired or~er.

(In this case, only letters have heen chosen.) These
letters, one by one, are again assign~d to the variable CHAR
(although any other vari.able would h~ve done as well) hy
means of t.he CHAR. PJ\T pattern. Using indirect referencing,
the variable named by the character is tested t~ deter~ine

whether or not it has a null value; if it is null, then that
character was never encountered in the t~xt ann so thp
v d ria b1e is g i venth e value z ere for 0 u t P \1 t Pnr po se s. '11h P.

output statement prints the value of CH~R (the character ~

the first time the output loop is entered) and the value of
$CH~R (in this case the value of the variable 7\, or 129).

1his scheme for specifying the printing permits the
programmer to choose the order of the output alphabetical
order, rather than text order - and t.o be selective: thf:'
program causes counts to be" stored for all char?,cter~

(nutfbers, punctuation, spaces, etc.), but only the counts
for the letters are recovered fo~ Frintinq.

~.

Con£~!£n~!iQn_~l!nin-_!he__QE~~£~ The concatenation
ope rater is needed vithin the operand of the indirect
referencing operator in applications in which variabl~s

having "successive" names ar.e to be used. "For example,
execution of a loop of the form

NLCCP

~LLGONF.

N = N.+ 1
OUTPUT = 1RIM(INPUT)
$ ('LIST' N) = OUTPUT

····
f (ALLGONE)

(NI.. OOP)

will cause an entirE' group of (lata to be rea<1, printed, and
store~, with succ~ssi.ve records heing assiqnerl as the val\l~s

of the variables named LIST1, LIST2, ••• , $('LTST' N). When

SA. Indirect Referencing. 61

the loop terminates through failure of INPUT, the value of N
is an integer one greater than the number of lines of data
which have been read. Since these lines of data are now
stored in the memory t.hey may be precessed in some way, for
examfle sUbjected to pattern-matching and replacement, and
eventually printed out again in an altered form. The
followinq loop may be used to print out all the lines,
reversing their line numbers in the output, so that the last
reccrd read in is numbered 1, the next-to-last numbered 2,
etc., until the first record read in is numbere~ N-1~

MLOOP

DONE

M = N
M = GT(M,1) M - 1
OUTPUT = N - M 'noaa'

: F(DONB)
!('LIST' M) : (MLOOP)

In the above example, a single set of successivPly­
named variables were being assiqned values (those whos~

names all begin with the characters LIST). This process can
·be mad~ more g~neral if several sets of successively-named
variables are assigned values by the same program segment.
If, for example, a file contained intermixed records of
various types, each type distinquished hy the first
character of th~ record, then the following segment of
program text. \-Ioulct Cill1Se each rc-!corc1 to he assiqnerl to t!aP
variable named by thp. concatenation of its first character.
(the type-code) and the number of records of that type
enccuntered so far.

REAC RECORD = TRTM(INPUT)

** CETERMINE TYPE-CODE OF RECORD
RECORD LRN (1) • CODE

•
• ADD ONE TO CCUNT fOP THIS TYPE

$CODE = $CODE + 1

··

··

F (DONE)

F (READ)

•
• STORE RECORD IN NEX'I "SUCCESSIVE" VARIABLE OF ITS TYPE

$(CODE $CODE) = RECORD (READ)
DONE

The first record found beginning wibh an E woulrl become
the value of the variable named E1, for example, and th0
twenty-fifth record fO'lnd hpqinning with a colon W0\11(1
bec cmeth e va 1 ue 0 f the va ria b1e na in (-\ rl : 211 .. 1fth~ dis tin r': t
type-codes are stored by the program as they are
encountered, then the records have effectively heen sorte~

in terms of their first characters, since t.he recorrls of
nach type c~n now he foun~ a~ the valu0~ of rtiff0r~nt fi0tS

o f s \) C C C S B i v f' I Y- n it In P rl v a ria h 1e ~) •

SA. Indirect Referencing. 62

Variables havinq "successive" names are also useful in
printing data in tabular format, where a varying numher of
spaces, or other characters such as dots or dashes, viII be
needed to make the dat.a line up pt'op~l:ly. The variable named
10, for example. could be assigned th~ value of a single
space, while the variable named 20 would have the value of
two Epaces, etc. In general, variables can he qiven names
which indicate their values, where the first. part of the
name indicates the number of instances of some character,
and the secon~ part indicates the character in question.
Thus the variable named 52X would have as its value a st~ing

of 52 XIS.

'the short segment of program tex.t below causes such
variables to be assigned appropriate values. The value of
MAX is the largest number to be used as the first part of
any name nnd is the maximum length of any string to be
assigned as value; the value of CHAR is the particular
charactei to he used as the second part of each name and is
the character of which all string values are to be compose~.

FORMLOOP N ~ IT(N,MAX) N. 1
$ (N CBAR) :.: $ (N - 1 CHAR) CHAP

... F(DONr~)

(FOR MLOO P)
DONP

If MAX has the value 10 and CHAR has the value of a
sinqle dash, then execution of the loop cau!=)es the set of
variahlps named 1-,2-, ••• ,10- to be assigned the respective
values -,--, ••• ,----------

A program may begin by executing th~ FORMLOOP seqment
repeatedly for each pair of values of CHAR and ~AX needed to
gen€rate the strings which may he required for formattinq
within the remainde~ cf the program. Then whenever, say, a
string of 42 spaces is neened it may be represented by the
eXFression $(42 'n'), and whenever 10 ppriods are need~~

they may be represented by the expression $(10 '. '),
provided the FORMLOOP seqment has heen executed when the
value of MAX was at least 42 ann the value of CfiAR was 3

space, an~ when the value of M~X was at least 10 an~ the
value cf CHAR was a period. If an expression of this form is
written in which the numeric part lies outsine the r.ange
specifipd (from 1 to the value of ~~X) when the set of
variahles involved was given value, or in which th~

character part is not a character which was the value of
CHAR when the ~ORMICCP segment was executed, then th~ null
value is likely to result; a variable will always h0
ret~rned from an expLession of this form, hut not
necessarily one to which a valu~ has heen assigned.

SA. Indirect referencing. 63

Concatenation within the operand is also u~eful as a
safeguard against conflicts which occur when a variabl~

returned by the $ operator turns out llnexpert.e(11y to he the
same as one written directly in the program text as an
identifier, and used for some unrelated purpose. In the
char.acter-counting example above, the writing of any one­
character name within the program te~t would hav~ produced a
conflict of usage if that character had occurred within the
text being processed. In that particular case, only
variahles with one-character names could he returned so the
restriction could be made that no one-character na~es h~

written in the program text. Often, however, thpre is no way
of knowinq which variables will be returned by indirect
referencing. Consider the case of countinq word~, rath~r

than characters, in a text; if the Sdme scheme is cmploye~,

then p.ach wor~ of the text will be used as the name of a
variabl~, and there is often no restriction on which worrls
may occur, so a conflict in the use of variables is likely.

Such conflicts may be avoided by usinq concatenation
within the operand of the $ operator to produce a strinq
which is not an iden tifier; then t hE variable retllt'ne(l hy
applying th? $ operator to this strinq will necessar11y hp
one whose name can never be written in thp pro1r~m t~xt.

This has been dane in the formattinq examplo above hy always
us i r. 9 a n u mbe r as t. h e fir st. pa r.t 0 f the nam e , sot b~sell a !ll (~ ~;

are never in identifier form~ Sirilarly, if the expression
$('It, CHAR) were used in place of $CHAP thrcnqhout tho
character-counting program text above, the rAstriction
against the use of one-character n~mes within the proqram
text could he removed; the number of A's in the t~xt woul~

the n b €I re fer red to hY the va ria b1 e nam e c1 *.1\ r the nn mher 0 f
B's by *8, etc. The two complete rroqram t~xts which follow
in this chapter both rely on concat0nation of this form to
insure against the pORsibility of error due to conflict.

A_R.tQ.9.£.i.!!!_.!Q_£I2QJ1£g_i!._EI£gy.Q!1£LIa b!g.:. Th P. us e f ul ne s s
of mill tip1e inn i r t.~ c t. 1:' e fer e nc i n 9 is i 11 us t rat. 0d in the
following program, which is similar to the character­
counting prO<1I"dffi but produces in~tead a frequp.ncy t.ablp
specifying how many letters failed to occ~r in the text, how
many occurren once, how many twice, etc. The proqr.a m h0qins
in the same way as the character-counting program, hy usinq
a variahlp. namf.lc} by a charact.er to rpfp.r t.O thp nnmhpr of
t i 111 cst h ;1 t c hdr,\(": t 0. r oc C\l r r c (! wit. h tnt he t. p x t • wh P II a 1. 1. t. h p

t ext hIi S bt? e n t'end in, t. he c ha r act 0 L" c; 0 un t s t. hem SP 1ve ~"l [1 1:' (~

userl as the operands of the $ operator to return variahles
whose namps are O,1,2, ••• ,etc.; the values of th~sp

variahl~s are increase<l by one for edch chdractpc which
occurred that many times within the tpxt.

SA. Indirect Feferencing. 6U

Concatenation is used in this example to prevent the
conflict of variable usage which would occur if the text
contained any digits. If concatenation were not used and the
text containe~, for example some 3's, then the variable
named 3 ~ould be used in the first part of the program to
refer to the number of 3's occurring in the text; in the
seccnd part, when the frequency table was being formed, th~

variahle named 3 would be used ~o refer to the number of
characters which occurr.ed exactly three times in the text.
Since the variable named 3 would then alrsady have a valup.
indicating the numher of 1'5 in th~ t.ext, the frequency
table for 3 occurrences would be incorrect. (The proqram
would appear to run correctly and the only indication of
error might be an abnormally hiqhcount.) Thus concatenation
is used to return a variable whose name is 3* for the first
part cf the program; the freque~cy table for characters
occurring 3 times can then safely be made with a variable
whoEe name is simply 3.

* fROGRAM TO MAKE A FREQUENCY TABlE

*

··
··READ

LOOP1

CHAR. PAT = tEN (1) • CHAR
LINE = TRIM(INPU~)

LI~E CHAR. PAT = NULL
$(CHAR '*') -= $(CHAR '.') .. 1 :

F (CHARS)
F(READ}

(LOOP1)

o

GIVE MAX THE VALUE OF THE LARGEST COUNT SO F~R FOUND
MAX = GT($(CHAR '*'),MAX) $(CHAR '*')

.1

CHANGE ANY NULL VALtlE TO ZERO
$(CH~R I.') = IDENT($(CHAR '*'),NULL)

*
*

** SPECIFY THE CHARACTERS WHOSE FREQUF.NCIES ARE TO ~E FOryND
CHARS ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
LOOP2 ALPHA CHAR.PAT = NULL : F(PRINT)

*
*

NO LETTERS OCCUPRED COUNT TIMES, SKIP IT
IDENT($COUNT,NULLl : S(SKIP)
OUTPUT = $COUNT 'oLETTERSoOCCURRRDu' COUNT 'nTIMES'

** USE DOUBLE INDIRECT REFERENCING TO MAKE A COUNT OF COUNTS
FREQ $$(CHAR I.') .: $$(CHAR I.') + 1 (LOOP2) .

** PRINT THE FREOrJENCY 'fABLE
PRINT COUNT = 0

** IF
I,OOP 3

** INCRF.ASE THE VALUE OF COUNT UNTIL 'THE MAXIMUM IS FEACHEO
SKIF COUNT = LT(COnNT,HAX) COUNT + 1 S (LOOP3)
END

SA. Indirect Referencing.

Output from this program would be of the form

2 LETTFRS OCCURRED 0 TIMES
4 LETTERS OCCUn~ED 1 TIMES
2 LETTERS OCCURRED U TIMBS
7 LETTFRS OCcnRRED 6 TIMES

and so on. Such a table would have at most lb entries; all
26 would be present only if each letter had a different
character count associated with it.

The statement labelled FREe uses double indirect
referencing to form variables from these character counts.
Its rule represents assiqnments of the form

$'0' = $'0' + 1
$'1' = $'" + 1
~'2' = $'2' + 1

The value a~signed to each of these variables is increased
by one every time a character is found which occurred that
many times in the text.

(Note that it is necessary to assign the value z"ro
rather than the null value to variables representino
c ha r acte r s wh i c h 1 i d not a ppea r i nthe t ext. • I f t his w0 1:' .;'

not done, the rule part of the stat~~ent labellpd Fnpo would
attempt to represent a rule of the form

$" = $" + ,

if the value of $(CHJ\R '*') was null, and an ~x'?cution-tirnp

errcr would result.)

A-R~Q~~n_!Q_£IQg~£~~_EQ£j_~Q~n!~As a further example
of the use of both multiplp. indirect referencing and
concatenation, consider the following word-counting proqram
which works on the same principle as th~ character-countinq
program; it uses each word as the name of a variable and
incr€ases the valne of that variable hy one whenever thp
word occurs within the text. The process of print.inq ont t.ho
words once the counts have been formed, however, i~

necessarily more complicated than that of printinq a
charact~r count. Whil~ it is possible to specify all thp
characters which may occur in a text, it is zRldom possihlp
to ~pecify all the words. If counts are desired for only
certain words, then a list of those words can be suppli0d a~

da ta to thp. program; but if a 11 woros are to be COIl nt eri, or
all words except t.hose specifip.d, thnn some record must h~

kept by the proqram of all different vorrls encounterp~ so

SA. Indirect Referencing.

they may be retrieved. In this program, concatenation is
used to assign each new word to a variable whose name is of
the form W/1, W/2, W/l, etc., so that all warns of the text
may be recovereQ for printing w1th the use of th0.sC
"succe~sive" variacles.

* PFOGRAM TO MAKE A WORD COUNT
* SET UP WORD-FINDING FATTERN

* PUNe = , (]. , : ; ,
WORD. P~T = BREAK (PUNC) • UO~D SPAN (PUNe)

(SF, CONCATENATION IN FORMING THE WORD COUNT
$(S*I l~ORD) = $('*' WORD) .. 1

F(LOOP1)

F (OUT)
F (READ)··

··

··
TEX~ AND FIND WCRDS

LINE = '!'RIM (IN?UT) '0'
LINE WCRD.PAT = NetL

TEST TO SEE WHE~HER THIS IS A NEW wORD
IF NOT, RETURN TO lOOP1

EQ{$('*' vlORD) ,1)

** READ
REAr
LOOP1

*
*
*
*
*

(LOOP1)··
NEW WORD - ASSIGN IT TO A V~RIABLE NAMED W/1, W/2, ETC.

N = N'" 1
$('W/' N) = WORD

** ~lL DATA HAS BEEN RFAD IN - PRINT WORD COUNT TABLE
OUT M = L T { ~" Nl M + 1 : F (E t~ D)

OUTPUT .. $('W/' M) 'nooc' $('*' $('W/' M»
: (OUT)

END

The words are printe~

occurrence in the text.
text would be

in the order of their first
Output for a well-known six-worn

TO 2
BE 2
OR 1
NO'! 1

Tn the processing of this short text, the rule

$('*' WORD) = $('*' WORn) + ,

at different times is equivalent tc rules of the forM

5A. Indirect Referencing.

$'*TO' = $I*TOI + 1
$'*BE' = $'*BE' + 1
SI·OR' = $'*CR' + 1
$'*NOT' = $'*NOT' + ,

and the like, while the rule

67

$ (; WI i N)

is equivalent to

= WORD

$' :1/1 •
$ '~J /2 '
$'W/3'
$'W/4'

=

=
=

'BE'
'OR'
'NO'I '

ihen the first line of the output is printed, the
out put statement

OUT P (J T = $ (, WiI'M) , a D a [] , $ (' *, $ (' III' M»

is equivalent to

OUTPUT = $'W/1' '0000' 1) (' *' $'W/1')
or

OU'J'PU'I -= $'W/" '0000' $'*TO'
or

"""'1')nfTI = 'TOuuu02'VV.l. t.-v ...

I~Qi£~£i-Bf!2I~nQi~g_~i!hin _!hg__QQ=tQ~ The indirect
referencing operator may he userl within the go-to part of a
statement a~ well as within the rule. When the $ operat~r is
used ~ithin the go-to, it takes the strinq which is its
operand and returns the label which is that string. Thus the
go-to's

and
··
··

($'PEAD')

(READ)

have the identical effect of causing a transfer to be tak~n

to the statement labelled READ.

(Note that the $ operator must appear in5ide thp
parentheses rather than outsi~e, since the only chara~ters

wh ieh rna y app0a r be t wee n t h8 cclon a fI(l the 0 pen par pn t.tH~ni s
of th~ go-t.o are an S or an 'F. 'rhus the go-to: :5 (' RE.~f)')
is syntactically incorrect. tnner rarentheses, such as

($('n~hD' N») u['f'; p~rrni.ssihle.)

SA. Indirect Referencing. 6R

As before, the power of indirect referencing becom~s

visi~le only when the operand consists of something besides
a literal. The statement

LINE LEN (6) • CODE ·· S($CODE)

illustrates the usefulness of the $ operator within the go­
te. It causes the first six characters in the value of LINE,
if there ar~ that many, to be assiqneo to the variahle ConF.,
and then, on success, transfers to ~he label specified hy
tho s e six C il a rae t e r s • ('I he val ue 0 f CO DE \l hie h was 0 b t a inc c1
in the rule part of the statement is immeoiately available
for use within the go-to.) The single general go-to
: ($CODE) may t.hus represent a great many specific qo-to's,
one for each possible value of CODE. These values ~hich CODE
may acquire must all be in identifier form, since an
individual label must actually exist within the-program for
every possible transfer which is taken. (The indirect
referencing operator rna y not he usecl in the label fi eld, so
there is no way of using a label which is not an
identifier.) If an attempt is made to transfer to a non­
existent label, an execution-~ime error will result.

If the special variable INPUT occurs within a go-to in
which an indirect referencing operator is used, as in

EO(X,Y) ·· S($(TPIM(INPU~»)

it is assigned as value the next data record, since this
string value is needed as the operand of the $ operator. If
the next data record had the characters NOUN as its first
four characters, followed by spaces, the go-to shown above
wbuld send control to the statement labelled NOUN if the
rule precedinq the go-to succeeded. If INPUT fails, or any
other failure occurs in a go-to, then an execution-time
errcr results, since no information will he available as to
which statement is to be executeo npxt.

Concatenation is often used within the go-to to send
control to "succ~ssivel1 labels of the program. For example,
the statement

N = SIZE(~ORD) ·· ($('ROLE' Nl)

assif]ns to N the int.egcr length of the valup. of WORD, anc1
the n t ran s f P. r s con t. r 01 t 0 ii. 1abe 1 s pee i f i. ~ <1 hyeonc il t t;-' n(1 tin q
thp. characters RUtE and t.his integer; if WORD ha::--; as it.~

value any one-chdracter string, a transfer wouli be tak~n to
the statemnnt l?.bclled RUr..E': if weRD has as value a two­
charactpr string, then control would he sent to RULf,2, etc.

SA. Indirect Referencing.

(The statement.s st.artinq at RaLE' would presumably specify
some process to be performed on one-character vords, which
would l::e different from the process at RtTLE2 for two­
character ~ords, etc.) The same effect could be achieved by

. t·\'I:'1_1ng

.. ($('RULE' SIZE(WORD»}

Ncte that some device such as the concatpnation of an
alphabetic literal is necessary ~n the above example r since
one may not wriTe simply

or
··
··

($N)

($SIZg (WORD))

Theso go-tots would send control to labels of the form 1, 2,
~, etc., and such labels do not exist since they may nct b~

written in the program. Indirect referencing within the go­
to is oft8n useful, but is more limited than indire~t

referencing within the rule: the string designatinq a label
must always be in identifier form and a corresponding label
must exist in the program te~t in erner for the transfpr to
be taken; on th0 ot.her hand, the strinq oesignatinq the name
of a variable may he composed of any characters, since any
string nam~s a variahle, and there is no ne~~ for that
variable to hav€ been used in any prior statement of th~

proqral1l ..

10

6A. PRCGR~MMEF-DFF!NED PFOCEDURES

In addition to supplying a nurobe~ of useful predefined
procedures, Snohol provides a mechanism which allovs a
prog ram rot e r to rl ~ fin e any pro c e d 11 reo f his 0 wn c h00 si ng. This
perrrits th2 task which a proqram is to perform to he
expr~ssed as a series of separate processes of varyin1
degreps of complexity, each of which is defined as a
procedure. The more complex procedures may consist mainly of
calls to simpler procedures which have been defined earlier;
many of these procedures, in turn, ~ill make use of th~

predefined procedures supplied by th(~ Snobol syst,em. Onc(~

the necessary proc~dur~s have been written~ the writing of a
prog~am to perform som~ task is simplified since it can m~kc

reference to the hiqhest-level, mos~;: powerful proc~dures.

P~oqram texts written in this, fashion are easier to writp
(ani incidentally easier to read) because their orqanization
reflects the structure of the process embodied in the
progra m.

~~il!lillg_.2_££Q£~1l!.££.:. A definit.5_on of a new pcoce]ur f?

requires t~o parts: first, the name of the procerlurc being
defined and the form of future references to that proce~urp

must be d(~clar2d to the Snohol syst0.m: socond, i1 ('~~~~;cr.irti.on

(in Snobol) of what the proc~rlure is to do must he provi~e~,

which will be expcuted each t.ime t.he proc(~(ll1re is call(~d.

1he declaration of a programmpr-definod procedurp is
acccmplishe~ by executing a prerlefined procedure, DFFIN~(),

whie h in its s imp1est for' m has a sin q1ear q!1 men t co n;::; is t 1. n fl
of a string which is a sample reference to the procedure.
Por instance

DEFINE (tREPEAT (N,OB.JFCT) ')

dec 1aresane w pro c e du r 4:) , REP E1\ IT' (), \i h i chis C\ e fin erl t 0 ha V?

two arguments, represented by the names N an~ OBJECT. Thp
description of whi'lt thp. REPEA'!' () procedurp is to 10 c~,n be
anythinq expressihle in Snobol. If its purpose is to
concatenate some Oh;8ct to itself n times, this might he
expressed as follows.

BEP'EAT N = GT (N, 0) N - 1
REP~AT = REPEAT OnJEC~ ..

F (RET un N)
(REPEAT\

This Sf':ct ion of proqram text, tprmcrl a "proc~dl1r.p

bod Y," i s \oJ r itt e n i n c\ ceo r dan c e withanu mbpro f con vP. nt ion ~;

which are th~ 5ubiect 0f the followinq sections of this
chapt~r. It is irlpntifie~ as the procc~uro bo~y for th0
REP E1\ TOproc ~~ dur (~ 11 Y t. lH~ 1a bP. 1 RErE A'f, '" 11 i (: h h (l S t. 11 f? S ::l m(~

6A. Programmer-defined Procedurp.s 71

form as the name of the procedura~ The names ~ and OBJECT
are llsed both in the declarat.ion a nel in the proGedu re hon y
to represent the two arquments with which the REPEAT(l
proc€~ure will te called. ~he value of N in~icdt~s how many
times the valu~ of OBJECT is to be concalenated to itsRlf to
for m the val ue to be return e d by the REPF:~. T () Pr oc e~ ur e •

The first statempnt of the pro~edure body sp0cifies
that the value of N is to be decremented by one if it is
still qreater than zero; the second statempnt specifips that
the value of OBJEC~ is to be concatenated to the val~e of
REPr~T, initially null, every time N is successfully
decrementpd. When the value of N b~comes zero, then the
des i r € d nu mbe r 0 f GO ncat P. nat ion s h a v e been f' e r f 0 [me r1 il nd t h p

failure transfer to RETURN is taken; this represents not any
fixed location in the program, hat rather a request to th0
Snobol system to return to whatever statement contained the
call to the REP~~AT() procEdur.e. The REPE.~T() proC'i:,rlnrp.
returns as its value the cnrt'~nt value of the variable n;:lm':'~a

nEPFA'r (a g a i n ;'1 i t h t Ii e S d ne for mas t ben a mea f t h c'
proc ~ d nr e) when t ii(~ t rans f G r toR E'T U it N is t?1 ken.

Once the RF PE~. 'T' 0 r-r:OCf?~ u n:, h as been dec 1 ar 80 anct J

prOCE~ure hody provided for it, then it may be invo~ea by a
prcc('~urc ref(~rc~nce anywhern in the program tP.Kt. Far
i.n:1tance r onc miqht \irite the assignmp.nt rule

OUTPUT = REPEAT(10,'X')

to ~pecify that a string of 10 X's is to IH~ printe rl.

The REPE~T() procedure provides a simpler method of
producing the varyinq length ~trings nepcte~ for formattinq
than the scheme involvinq indirpct referencing desr,ribed in
Chapter 5. Here it is not nec8ssary to store values with a
set 0 f s uc c e s s i vel y - na ~ e d \T a ria ~ 1est n a r1 \' (\ nceo f t. h e i r u s ~

in erder to insur0. that a string of the right length will h(~

available; rather the needed string is generatpd hy the
pro c € dnr e c a 11 • TJ sin q REP E7\ 'T (), the <1. 1t e t' Itate r e co n1 Si 0 f (\
data qroup may be printen in il two-c01n:nn format, stich that
the first reccrd of a p'\ir is print~d startinfl in COlll!fln 1
and thA spcond starting in a column which is the value of N,
with a suffici~nt nurnDPr of the formatting character whic~l

is the valu0 of elf printt:)(l in b0tw(=)pn. Th0. followi.ng proCfrarn
seqrrpnt may h~'A \l~~p(i for: thdt Plll·POS('\.

LOOP

+

nEe1 == TRIM (INFf1~) ~ F{DONF)
RF.C/ ::: THTM(JNPlJT) F(P.RROR)
OfJTP7JT ..,:,: REe1 nr;PE1,1' (PI ". 1) _. STZI: (Hr.C1) ,Cit) nrC2

(LOOP)

6 A• Pc 0 9 [a mriH~ r - d ~~ fin e aPr 0 C e d u t p s 72

Since patt~rns may be concatenat2d to onp another as
well as strings, the HiPEATO p['ocentlre may to.K.e a pattern
as its secono argument and ~ill then return a paitern as its
value. For example, the pdttern-matchinq rule

WORD REPEAT(],~N7(VC~BLS» .. S(YES3)

will succeed and send control to YES] if the value of WORD
contains at least three contiguous vowels.

PLoced~re names may be defin~o more than once in a
program an~ even the names of pred?fined procedures may hA
redEfined (olt.hough ther(~ is selrIom any rpason for ooinq
so). Tn each caSG, it is the most recent definition which
establishes the current meaning of the proc0durp name, an~

any precedinq definition is lost.

Ih~__QgKIB~lt __i!Q£~1~£~~ The preoHfineJ procedurp
DEFiNE 0 will accept two a["gl1m~ntsr both strinqs. The basic.
ferm of the first arqument consists of the namp. of the
procedure beinq c1pfined followed. ty a parr~Ilthesi:?:ed li~~t. or
names of "formal var'iables" (or urlunmy var.iables") which Clt"P

use din t. he p 1: oc G c1 U L e hod y tor e pr .~ sen t the a 1 q It 1iIen t S ·wI i r h
which the proceol.lre will be callen; in the exall1plp. abov(~,

DEFINE C t REPEAT (N,()BJECT) ') I the D[ocp<hlr0 BFPEA1' () i ri

declare~ with the t~o formal variahl8s N an~ OBJECT.

Procedure names and names of formal variables may he
f r eelyinve nt e (l b Y t h~ pr.o <J ram In e T..' , S n h i ec t. tot he usn a J.
restriction that they be identifiers. They may be the sarn~

as names used elsewhere in the proqram text for other
purFoses, because all the names in tbe first argument of th0.
DEFINE 0 procedure are nsed" in a special way: rrh~n a
proc€~ure is called, these nawes arp all ma~e to refer to
new variables, "int.er~a.lft to +:h~ pr-ocedur'e call, which arc
aistinct from the variai::les to ~hich the names previollsly
referred; th0Y will continup to refer to thesp internal
variables until a return from thp ~rocedure call is ma~e.

('this mechani.sm will btl descritell in detaIl in folinwinq
sections of t.his r.hapter.) It turns ont to he Ilspful to ha vc~

other names which are made to refer to !nternal vari~bles

for the durat.ion of each procedure call; these names of
additional i n t p rna 1 va ria b l,~ s , if \l s P <1 , are wr itt P. n
i mm(l c1 i (\ t pI Y f 0 11 0 win <J the r, los i. nq p r\ r. ~ nt. he s i ~.~ () t t hA for. m(1 1
v a r i i\ b 1elist. T\ ri c fin i t. ion 0 f a Pn1 wr () p r () c ~ (\ \} r p , wit i c h
h~ s t h r P, 0 t\ d (1 i t ion ,1 1. i. 1\ t (~ L n ~ 1 v i1 rill h 1 f~ ~; , C 1") \ 1 1 (1 h l'

DFPIHP (' rn!NT (N, Nf\ME) M,I,.;, P')

The internal vari.ables M, w, an(1 P c0uld th()n he usocl wit.hin

6A. Programmer-defined Procedures 7)

the pro~edure body where they might be assigned some valu~R,

such as tallies, needed only during execution of thp
procedure call. Notice that the list of additional internal
variables is an extension of the string which is the first
arqumer:t; no embedded blanks aLe permitted in this strinq.
There is no limit to the number of formal variables and
additional internal variables with which a procedurp may he
~eclar€d.

It is also possible to declare a procedure with no
formal variables, as in

DEFINEC'BFCORDS()'j

if the process which the procedure is to perform is not
dPfendent on an argument list. The RECORDS() procedure, for
examFle, might be used to count all recor~s in a group of
data read from the input file. Even though there is no
argument, the pair of empty parentheses must still appear,
hoth in the declaration and in every reference to the
procedure in a program text.

The second argument of the DEFINEO proce~ur(? is a
string which is th~ label of a statement in the procedur0
body which is to be executed first whenaver the procedurp is
called: this label is terrr.ed the "entry label." If the
seccnd arqurnent is null or missinq (and thus null bv
default), as it has been in all previous examples, the pntry
labEl is tak~n to have the same form as the procenure name.
Thus the declaration

DEFINE('RECORDS()','FECORDS"

would have precisely the same effect as the prece~ing

examrle, of defininq the entry label to be RECORDS.

More commonly, the secon~ argument of DEPINE() is usen
to insure that the entry label for a proce~ure body is
different from any label which may happen to appp.ar
~lsewhere in the program text, since all the labels of a
program must be unique. Thus the convention may he adoptp rl
of torming all entry lab~ls by precedinq the name of the
procedure with the string PR.; the evaluation rule

DEFINE (. RECORDS ()',' FR. RECORDS ')

d~plares that the entry label for RECORDS{) is the label
PR.RECORDS, and thR first stat~mpnt to h~ exp~ut~d in the
prOc€r]ure body for t.he RECORns () tJrocf.-durp. m::st bear that
lahel. {The labels of the other statpments of a procerturp

6A. Program~~r-define~ Procedures 74

body shoul~ also be protected from conflicts by adopting
scme similar conventions.,

The DEfINE() procedure itself returns th~ null value
when it is executen.

RIQ~g~~_~21i~2~ A DEFINE() procedure decl~reg to the
Snobol system the name of a programmer-defineo procedure,
the names of its formal vari~.bles, acltlit.ional intprnal
var.iables, and its entry label, tnt gives no indication of
its effect; that information is supplie~ by a oroceUurp.
bony, which consists of a serips of Snohol statements to he
executeo wh~never the procedure is invoke~. ~ procedure hany
may consist of any number of Snohol state~ents, one of which
(not necessarily the first) must have the label declared by
the DP.PINE () as the entry labEl for t.his pr.ocerlllre. The
stat~ments of a procedure body may he of any kind; they may
inclu~e procedure declarations and references to other
procedures, or even to the proce1urc beinq ~efine1~ A
Frocedure whose hody contains a referpnce to itself is
t e J: me c1 a n r e cur s i v e proc e d u r c" ; e xa £:1 pIe S 0 free ur s i v P:

procedures may be found in Chapter 8~

!he statements of a procedure body should bA execute~

only in respons~ to a procenure c~ll, so procedure bodies
shcu11 be locate~ within a Snobol program text in such a yay
as to be outside the flow of control of tho "milin progr.am";
the main program consists of all statem~nts except those of
procedure bodies.

The specific~tion of a procedure's action is made
general rather than specific by using the names of the
formal variables within the d prcce~ure hody. In the
definition of the COUNf() p~ocedure shown helow, the formal
variahl~s PAT and tINE are used to represent the many
differpnt arquments with which this procedure may be called
on different occasions.

END.COUNT
..PR.CCUNT

DEFINEC'COUNT(PAT,LINE)
LINE P~T = NULL
COUNT = COUNT + 1

, " pn.COUt~T') : (r;ND. COTJ'~")
F (RETURN)

(PH.COUNT)

The first ~tat~ment of the frocedure bo~y specifips
that the value of the second argument LINE is to he searched
for an insta~ce of the first arqument PAT; the secon~

st~tem0nt of the proce~ure body incrernpnts the value of
COUNT each time d pattern is foun~ an~ sends control b~ck to
the fir s t st.atemen t to ins tit ute an 0 t her s e (1 I:" C h. CO UN T 0 i s
thus gp.nerally iiefined a3 a pr.oceduLe ",hich counts thp.

6A. Programmer-defined Procedures 1S

number of occurrences of some pattern ~ithin some string:
infcrmation as to what pattern and what string are to he
used will be supplied to the procedure body by the argument~

each time th~ procedure is called. (Notice hotl tht? procedure
body has been removed from the flow of control of the ffi~in

program by the unconditional transfer following its DEFINE()
statement ..)

'Ihe internal variatle named COUNT, rather than any
other variable, is assigned the r~sult bec~usp. ot a
convention which exists for the returninq of values: when a
Sllccess ret.urn from a procedure i~ taken, the last value
assiqne~ wi~hin the procedure body to the variahle whosp
name is the same as that of the prcce~ur~ is returned as the
value ci t.he procedure call. If that \"'aLiable, which is
t e r ro (~ 1 the It r e s1..1 I t v aria b1e , If is ass i 9 ne rt nova 111 e duri n q
the execution of the procedure body, the null value is
ret 11 t" n € d • A v ~ 1.u e 0 fan y d a tat yp e may b P. ret ur ne d as t Ijf-~

value cf a procedure call •

.Ih~_E£.t!ll:ll§_B~.Tn RN.L_fllL~!!IB~_~nLf.E!1T!lE:E.!. The 1 oq ica 1
end C' f .:l Pr. () Cf~ (~ u r (' hod Y iss i g na 11 e d by a q () - to spec if yin q il

t 1: ~ nsf. (":, r toR E'r fJ RN (the 5 tan cl a T:\1 S uc c e s s r E" t urn), t.o NHEl' {Jl~ N
(allcther success return, for. returning a var-i.able rClt.hec
than a valu~), or to FRETun:~ (th0. failure r~turn). 'rh0:--~0

tran~fers have special system definitions and constitutp
requests to the Snobol system to return control to th n

stat.pment from which the procedure was callen. liny number of
statements in a procenure body may contain tranf~fp['? to
RE1URN, NRETURN, or FR~TURN; the first such transfer to bp
executed ends execution of the procedure call. If eithpI:'
success return (aETTJRN or NR~1'TJRN) is execut.ec1, the valu(~ of
t.he r~sult variable is returned as the value of tho
pl'oced~re call and execution of the callinq st.atempnt
resumes at the point of the call: if the ftlilurt~ rpturn
FRETURN is execut~d, no value is returned but control is
sent directly to the go-to of the callinq st.atement wherl?
the failure transfer will ba taken.

There is no restriction aqainst using f\E'I'UT'N, NHE~URN,

or FRETURN as the label of any statement within the proqram
text, but if this is done the special system definition of
that return is lost. Hence RETURN, NRE1'URN, and FRF'T'fJRN must
not be usc 0 as 1abe 1s wit hi nan y pro <J ram whie h 8 mp10 y s t h (~ m
to return from a proqrrunmer-defincd p['oc(~(lnrl?, or (.:'ls~ '1

t ran sf e r toRET(J RN, for e xamp 1e , fro maproc '-:: (1 ur e be> dy 'II ill
send control not to the callinq statement hut to th~

statement labelled RETURN.

6A. Prcgrammer-defineo Procedures 76

1he example below presents ancther way to write the
COUN'! () procedure, in which the prccenure body inclurles bot.h
RET UBNand 1;' RET nRN t ran sfe r s • (An ~ x amp 1e 0 f apr 0 C e d U L e
which uses NBETURN may he founrl toward thp enn of this
c hapt e r .) As be for E: r the proc e dnreiS l-l ,:: s i g il c~ t 0 co un t t h (~

number of occurrences of some pattern within some strinq;
here, however, if no instances of the patt~rn are fau~~, th0
procedure does an FRETORN, causing failure of the rule from
which it was called, ra ther than returning the n nll va lu~ ..

OUT. COUNT
END.COUNT

PR.CCUNT
DEF'INE('COUNT(PATrLINE) ','PR.COUNT') (FND.COiJNTl

tINE pr, T = NULL : P (OUT. COUNT)
COUNT = CCUNT + , : (PR. COtTNT)
IDENT (COUNT, NULL) S (FRETURN) F (RETURN)

As in the earlier nefinition of COUNT 0, the count.ing
loof is executed until the patt~rn match fails. When this
hafFens, however, control is sent to the st2.tement labcllcfl
OOT.COUNT which tests COUNT to see whether or not it has
been incremented. If it has not if the pattern match
f ail e n on the fir s tat t e mp t -- t hen CO UN'1' has a n nll va 1 uc ,
the test will sl1cceed, and the procpoure will do an FR'r...·(1U;.~N
causing failure of the procedure call; if cou:rr is non-Dull,
then the procedur~ will do a RETURN, returning the value o~

COUNT as the vallIe of t.he procedure call. Often, as here, i'\

success transfer may lead to an FRETURN, and a failure
transfer to a RETURN.

NUMBER~ = COUNT('A',RECORD) : F{NONE)

is executed, the procedure call must he processed before the
assign~ent can take place; hence, execution of the callinq
statement is temporarily suspended while the Snobol system
executes the procedure call.

70 carry out the call, the Snohol system hegins hy
taking several automatic actions. First the names in th~

first arqument of the DEFIN~ () statempnt ar0 made to rr:fpr
to new variables which are internal to this call o~ th~

procedure. ~he procedure name now r~f~rs ~o th~ internal
result variable, and the fermal variable names rpf0I: to
internal formal vilriahlps. Next the internrtl varia.hIps to
whie h the s p na i.'\ :-:' S no "J r (1' fer are (\ s s "i. q ned t hP. V i1. lli f.~ S 11 P P cl P r'
for the e xe cut ion 0 f t his call: the r p s u1t v a ria h 1e (C (P' Nl'
in this case) is assigned the null value, thp formal
va ria b I ~ r; arc ass i q ne cl t h (.; val \1 C S 0 f t h f:!ire 0 L re s p 0 n0 i n q
arquments (in this e~arople, the formal variable P~T is

6A. Prcgrammer-nefined Procedures 77

assigned the character A and the for~al variable tIN~ 15

assiqned the value of the variable RECORD). Since there is
no way to make reference to a vari~ble except by usinq its
name, this means that the variables formerly r~ferLed to by
the names COUNT, PAT, and LINE are inaccessible during the
execution of this procedure call.

After this preparation is completed, control is spnt to
the entry labpl and execution of the procedure body begins.
~he action of the procedure is carried out using thp. valuP'5
of the arquments provided to the procedure call~ since these
have ;ust been assiqned as the values of the formal
variables. The statements of the prccedure body are execute~

in the usual way, until a request for the system to do ~

return is encountere~.

Any return automatically reverses the actions of t.he
preparation process: the names of the procedure anrl of thp
farcal vari~bles are made to refer to the same variables
which they named 1ust before the procedure call ~as

executed, and thus the internal variables, having serveo
their purpose, be~ome in turn inaccessible. The flo~ of
control r.everts t.o the calling stateMent. -- on a RF'T'URN, to
th~ Faint of the procedure call; on an FRETURN, to the qo­
to.

.TlliL_.R_~~il1.9-2f_~!gl!m£..Q!'§.!.When a proced ure i~ invoke(l t'

the values of thp. arq 11wents in the procednre refere!lC0 aTr!

said to be "passed" to become the values of the forma 1
variables. The values of the arguments arp. assigned to tho
corrcsFonding formal variables on a one-to-one, left-to­
riaht basis. Any procedure, predefined or proqrammpr­
d~fine~, may be called with more or fewer arquments then its
~efinition provines for. Missing arguments are taken to hav~

the null value; extra arguments are evaluated before the
procedure call is executed, but are otherwise ignor:r~d.

Tn Snobol, all arguments are passed "by value"; that
is, the arguments are evaluated and the resultinq values are
passed to the procedure body. (In fact., the mechanism for
passing arguments has th~ same effect as if a Snohol
assiqnment rule weLe execut~d, with the formal variablp on
the left side an1 th~ argum~nt on the riqht.) This method of
passing arqumpnts assures that the values of varia hIps in
the arguments are not affected by execution of the procedur n

call. For instance, in the call

NUMBER~ = COUNT('A',FECORD) F(NONE)

it is the value of the variable R~cnRD which is pas~ed a~

6A. Proqrammer-aefined procedur~s. 78

the value of the second argument. The procedure will use,
not the variab].~ RECORD, but only the internal formal
variable LINE which has been assigned the value of RECORn at
the time of the call. Thus the value of RECORD is alw~ys the
same before and aft~r a call of thf' COUN'!' 0 proceduLe is
executEd.

Th~ arquments used in a procedure reference may be any
expressions having values which the procedure body will
handle properly. A call to COUNT() such as in the statement

NUMBERV = COUNT(ANY('~EIOU') ,RECORD) : F (NONE)

woul~ pass the pattern returne~ as the value of the
proceiure call ANY ('AEIOU') to he the value of the variable
P\T. Sinc0 p~'" is used in the patt.ern part of a statem{-~nt, a
pattern valHP is appropriate and the number of vowels within
the value of RECORD will be returned as the value of this
call to the COUNT () proc~rture.

While the fiLst formal variable r PAT, may acquirp
either a string OL a patterr. value, th@. second formal
variable, LINE, may acqH1.rl? only a string as val'Jp', since it
is us~d within the procedure bo~y as a string referenc~.

Execution of a proce~urc call of th~ farm

NUMBERV = COUNT(RECORD,ANY('AEIOU'») : F (NONE)

(in which the programmer has presumably forgotten thp
correct order of the arguments} will pass th~ formal
variable LINE a pattern value; when the proc~dure body is
entered an execution-time error will result, sinc~ the first
field in a replacement rule cannot he a pattern.

~1QiliQn~1_Ir.!~I~1_Va~i~hl~~~The names of variables
which are to be internal to a procedure call (in addition to
t.he result variable and any formal variables) are also manp
to refer to distinct internal variables at each procedure
call, thus making the variables preViously referred to by
those names tp.mporarily inaccessible; the names are restorp1
to their former siqnificance when a return from thp.
procedure call is taken. The internal variabl~s which th0Y
name are initially null at every cali of the procedurp just
like the result variabl~. ~hcre ar0 thus two possihle
r~asons for declaring ad~itional int0rnal variables: to
prevent thpir names from conflictinq with names US0~

elsewhpre for other purposes, and to take advantage of the
autt:;matic nall i.nitialization at each call. Any numb~r of
additicnal internal variables may ~e d~clared hy writinq
the i rna mesin the fir s tarqU tl1 en t 0 faD EFI tn: () proc ed ur e •

6A. Programmer-definen Procedures

As an example of the usefulness of additional intprnal
'lar ia b les, consider t he LON GER () proc~dure wh ich employ s
four of them. 1.his procedure compares the two strings given
as the values of its first two arguments to determine which
contains the lcnqer sequence of the chacacl(:'!rs spHcifien by
the \1alue of its third argument; it returns as its value the
string containing the longer sequence. If the size of th0
longest sequence in heth stcinqs is the same, then hy
conVEntion the first string is returned as th? value of th(".)
prccedure call; if neither string contains a character qiven
by the third argument, a transfer to FRETnRN is takpn
ct\l1~ing failllt'E' of t.hp pror.p~urp. r.all. Thll~ ~xpr.nt.ion of th~

assignment statement

+
OUTPUT:: LONGER ('HILARIOUS', 'TREACHEROUS',' AEIOU'l

F (NOVOWEL)

Mould cause the string HILARIOUS to be printed since its
longest vowel sequ~nce is longer than any vowel seq\lenc~ in
the string TREACHEROUS.

nEF!NE(tLONGEn(S1,S2,SRQ)'1,T2,S~VE,LONGEST',

+ 'PR.l.ONGFt:l') : (ENlJ.LONI,FR)
ijC MAKE COPTES OF THF. 'fWO STRINGS '10 BE COitPAHgn
PR.LONGER ~1 - S1

'r2 = S2
* FIND THE LONGRST SEQUENCE IN THE FIRST ~TnING

*

+
* IF NO SEQtJENCF. W~S

* OTHERWI SF. FF.1'tJR N
OUT. LONGER l~OHGER =
+
END.IONGER

T 1• 1 CNGER ~ 1 SrAN (S EQ) • S1\ VE :: NULL F (T2 • L 0 ~'1 ...~ T\ R)
LONGES'l' = GT(SIZE(SAVE) ,LONGEST) SI7.F.(S.~Vr.)

+ : (T1.LONGER)
* SEE IF THERE IS A SEQUENCE IN THE SECOND STRIN~

.' WHICH IS LCNGER THAN THE LONGEST SEQ TN THE 15T STnIHG
* IF SO, ASSIGN THE SECOND STRING AS THE VALUE OF THE
* RESULT VA~IABLE AND RETURN
T2.1CNGER 'f2 SPAN (SEQ) • Sf1. VE = NULL : P (OU~. LONGER)

LONGER = GT (SIZE (SAVE) , lONGFST) S2
S (R El'URN) F (T 2. T~ 0 NG FR)

POUND IN EITHFR STRING, FAIL
THE FIRST STFING AS VALUE Of THE CALL
DIFFER (SAVE, NULL) 51

: 5 (RE'rURN) F(FRETURN)

This proc~dure uses four additional internal variables
nallled T1, T2, S~VP, and LOiH-;EST. T1 and T2 arfl n0.ccl(J(1
bflCallSe the method used for i!p.t.p.rmininq thp lonqf'st VOWt".) 1
5 e que nee i 11 S' (} nc1 ~ /. (i e 1 e t e s (' ~ c h v0 ',~ p 1 r; f\ q \J P nee wh i.chi s
foun~. ~incp t.hp. original strillqs must be lJr~~sC'['ven to hp.
returned as the value of th~ procedure call, the ["cplflcpment:

6A. Programmer-defined Procedures AD

stat€m~nts T1.tCNGER and ~2.LONGER use the variables T1 an~

T2 rather. than 51 and 52, allowing the values of 51 and 57
to remain unchanged. The internal variable SAVE is assiqne~

each vowel sequence which is found. The fact that S~VF. is
given the null value initially allows the test in the
statement lahelle(l OU'1:. LONGER to deter mine whether or not
any vowel spquences have been found; if SAVE still has its
null value, then neither string contains a vowel and an
FRE1unN is taken. The internal variable LONGEST is userl to
Keep tr~ck of the size of thp. currently longest vowel
sequence as each is successively found within the first
strinq. When the determination of the size of the lonqest
sequence has been complete~, this number is then compare~

with nhe size of each vowel sequence as it is found in the
seccnd string until either a lonqer s~quence is found (in
which case the second string is returned as the value of the
procedure call) oc until all vowel sequences have been
considered (i!1 which case either the first. strinq is
returned or failure is signalled).

Since in this procedure body the internal variables T1
ano T2 ar(' assiqncd the values of the arquments as soon as
the p r oc ed ureb oel y i sent e r. ed, the 0 n 1 y Lea s on tor d ec 1ar i n q
them to be internal is to prevent conflicts with other uses
of the names T1 and T2. The internal variables SAVE an~

LONCEST are sirn~larly protected, but also take advantage of
the fact that they are initialized to null each time th0
I,ONGEF () proceollrp is callefi.

Note that the use of the additional internal variable
LONGEst is not really necessary since the result variable
LeNGER may be substituted for it whereVRC it occurs. Rp.sult
variahles have exactly thp. properties of aoditional i~ternal

variables until a success transfer is taken, so they ar0
otten assigned t~ffiporary values which are needed durinq thA
processinq of a proc~dur.e call. When the final value of a
call has been ~etermined, it can then be assigned to the
result variahl~ an~ a return made to the statement in which
the procedure call occurL~rl.

B~f~~£n£f~_lQ_li~1~In~1_I2Ii~~1p.§~The principle of a
programmer--defined r:rccedure is that of a "s\1h-prog~am,tt

independent of the program with which it is used; it
receives V,:l11l0S thrO\lflh itr; arqumentf;, performs SOffi0. pror.r:!~s

usinq t.hose valu~s, ancl r~tut'ns the r(~sult. If tempor-ary
values are needed, th0. procQdure assiqns them to aa.ditional
internal varia~lp5, so that it avoids changing th~ valu~s of
any variobles not internal to itself, i.e., those whos~

names do not appear within the first argument of th~

DEPINE(} statement for the procertut'p.

61-.. Prcgrammer-defilled Frocednres R1

Proc~dures written in such a way as to make reference
to no values other than these of their internal variables
(or to literals within their own bod1es), and which assiqn
values only to their own internal variables, are desirable
for many r~asons. They are easy tc move from program to
Frcgram siuce they wi.ll operate correctly regardless of
their environment, and they are easy to use because they can
influence that environment only through the result which
they return (including: of course, the possible "result U of
failinq) •

At the same time, there are som~times good r~asons for
relaxing this discipline, in pursuit of the same goals for
which procedures are written in the first place: to make
programs easier to write and clearer to read. One example of
such a motivation has already ·come up in Gome of thp
examrles; in th(~ procedure body fer the L01:GER () proc8durp.,
for example, the statement

T1.LCNGFR T1 SPAN('AEIOU') S~VE = NULL: F(T2.LONGF.R)

occurs. Her.e NULL is the name cf a var.iable which is
ext~rnal to the call of the LONGRR() proce~ure: since thn
name NOLL is not included in its declaration, it receivps no
special treatment ~hen this procedure is called~ it
continups to r~fcr to the same variable before, durinq, an~

after. a call t.o LeNGER (). Thus, if LONGER () "h~rp. to be
callEd from a program which ha~ assigned some non-null valu0
to the variable named NULL, it would not work as intended.

Tn this case there are several ways to restore the
independence of the LONGER () proce1ure; the irlentif ier NULL
can be replare~ in its hody by a literal null string (t~o

adjacent quotation marks), or by nothinq, or the name NULl.
can te declared as naming an additional internal vari~hle

for LON GER0, t husa 5 sur. in 9 t hat NUL I, wi 11 rp. f P L to a
variable initialized to the null value each timp. LONr,F.RO is
call€d. For this procedure such pr:ecantions seem extrpm£'!,
hut they miaht make sense if tONGER(} were a much mor~

comflicated proce~urp, and were intended for use by peopl~

ether than its Frogrammer.

As another motivation for making referpnce to ext0rnal
variables, consider ;} proqr"mmer-defi.ned tef;t proccr1u['('\
which rletermines wh~ther or not thA string given as its
argument is a palindr')me, that. is, whether it reads tho samp
frem left to right as from right to left. The complet~

proqr~m pr0senterl celow uses the PALIN() procedure to
per for m t h i. s t est. The prog ram rea dsaIl t rim IT: e c1 r ec c r (~ !':: 0 f
a qroup of data hut prints only. those which are palindromp.s.

oA. Prcg~anmer-defip.ed rroce~ures

F (ENO)
(RE1\D)

..

: S(RETURN)
S (PR • PAL1 N) F (F RETU RN)..

RECORD = TRIM(INPUT)
OUTPUT = PALIN (RECORD) RECORD:

* PALINDROME-FI~DING PROGRA~

** SET UP P~TTERN NEFDED BY THE PAIIN() PROCEDURE
* ASSIGN IT fro A MAIN-PROGRAM Vf\nIABLE

Pl\L. PAT -= POS (0\ LEN (') X CH RTAI3(i) • CAND *CH
DEPINE (t PAL IN (CAND) CH', 'PR. PAL TN') (END. PALIN)

** IF CANDIDATE Nnw CONSISTS OF 1 OR 0 CHARACTERS, SUCCEF.D
* OTHBRWIS~ APPLY THE PATTERN AGAIN
PR_PAIIN LE(SIZE(CAND),1)

CAND P~L.PAT

END.PAlIN

*RE AD
PRINrr
END

Output from this program could he strings of the fo~m

HANNAH
I
FCTeR

NOON
S1\GlIS

*103595301
YREKAEJ\KERY
><> <><> <><

The PAtIN() procedure uses virtually the same pattern
as that sho\-1n at the end of Chapt.er U for finding worrls with
i~entical first and last characters; the patt~rn is chanq~~

cnly by the re-assiqnment of the substrinq matched hy
R1'lE('} to the variable named C~_ND. Thus, on ~ach ib~i.·ation

of the loop the string being searched is shortene~ by the
loss of its first ~n~ last characters; a new set of first
and last characters is then testen for inentity. Thp. loop is
ex€cut€(~ until either (') t.he end characters being t8sterl
are facnd to he different, upon which an FRETURN is taken
signifying t.hat thp string is not a palindLom~, or (2) th~

size of the strina is rerluced to zero or one, in which case
a RETUEN is taken since this indicates that all characters
hav~ r.epn t('st(-~(1 (\n~ that the strinrt is a palin(lroll1P. Notn
that thf' rule in the statem0nt labellen PR.Pld.TN will
succeed immediatply if the size of the at'gUtnl~nt is Aithr>["
zero or on~r mpaninq that strinqs of one or no char?\~tprs

are palindromes by deflnition. The PAtINO rro~courf"~ r~tllLns

the n \111 vJ. 1neen [", \1 C C e !3:; , :=; ince the r c: s u 1 t v d r 1a b1 t-~ PAL I N
is not assiqned a value within the procedure bo~y.

6 A. Pro g ram mer - defin e d Proc ~; (} l\ r (~ s

Here the pattern on uhic1:l P~T,TN 0 rE-~lies i.s COHstrl)ct~~

once, in the sta tem~nt jus t a hove th~ nr:PINP (), and assiqn~l~

to the variable P,\1,. PAT. The r.caSOll for doi.ng this is clear:
since inte~nal variahles are intprn~l to a sinqle call of a
proced~re and th0ir v~lucs ~cvar pe~~i~t b~t~ecn calls, if
PAI,. PAT we ~ e ~ (~c 1arc il t 0 bet hP. nam e 0 fan ait ~ i t ion i'\ 1
internal variahle of PT\lIN() then the pat.tern assiqnment
would have to be movpd into the prccedure body, and thus thp
pati-ern wonId have to be constructGel anew at each call of
the PALIN () proceclur\? -- a substantifll amount of unn~C0ssar.y

effcrt.

It is t r 11 f' t hat. P fI L! ~ 0 wiiI r 0 ': W0 r k p !'0 per 1 y i f t h p

program calling it inadv0rtanlly a~sigus d ~iff~rent value
tot he va ria b 11::'> P.~ L. P l\ .,.,. J t L1 i q h t s c' ~ III t It at t his k i i1 d 0 f
error coulri l~'(~ avoided by re'-triti.nq Pld.INO to a,ccept tiH~

pat t (' rna S c..i. n () t h (~ t' a r- CJ 11 !ll e nt, ;:' a'::' ;ii.~ r -I: han rn p r f"~ 1 Y us i 11 q t Ilf~

value of iiil Pxr.(';!:'l,al varirtble; hIlt that turns Ollt. 110t. t.() hp.
t.rue. }\ ca l~. to SllC!1 a re-\iritten F.7I.i.IN 0 procedure \'!ouln h0.
sorer-thing lik~

, r a [t f [O:"~ t- h p hot Ii [.' r 0 r- ~n- i "\ i nC1 t h ("\ in v;\ [i it nt r i~ t t (~y- it) l\

e v (, L Y L r~ r .q' (.) n c () t:) P 71. L T'1 (), t h p n fl t t \~ r n i ~-; 0 Tl C () it q' i i. 11 1, (~l I: q

ccn~tr\.lct('(l at each c<111 of: [1,1\LI!J () --- in t.hp C"!ilJ.t:ttj on o~

t hGar gu tTl C~ nt, rat h ;.~ r t hd n 'r{ i t h .inth Q proc ;~: '1 u r p he' '1 y. f II (l

calli n Q pro ,1 r a 1'1 can a',r 0 i it t h 0 r C' ~) f~ C\ ted e v i1 1 II <1 t ion () f t r. (\
pattern by (~xecut:in<J the assi0ntilent sti1tplllent

r!iL.p.~T = POS{O) LEN(1) 5: CH R'"!1 I\B(1) • CAND *CH

and thpn making r0f0rences to thp procedure in thp form

PJld.IN (PAL .. PAT, RECCJRDl ..
Rut now, jllst as befor.E, the callinq progI:'d!'1 is t"2sponsihlp
for a ~ S 11 r i n q t· hat P ,~ L. F1'. T has t h 0 COt' r ec t val u f~ a t t h (~ tim (\
of the crtll., So tile 0rjginal p,aLINO proc(>(lur0 c~nnot h0
imp [() v p ri u p () n i nth i.'"': ,~ a y, a n~ h l1 S t h P ;1 il (1 i t i () n Q 1 1':1 ~ r i. t 0 f
r0quirinlf only (':,)10 i1; .. qllm(~nt ill~)t0,\(1 of tW(). 'i'hp conr:lti;·:ion
t c h e (1 r ;1wn 1 ~.; t h ;1 tapc1 t. t p r Jl \1 sed byaproc 0rl u r '" ~ m1] ~; t
pithpf he r:rnstrllct('(l (It each procc 1lur0 call, or C·1.~)I"') must
he a~)~-;iqtH'd i'\S tllp V~,1110 ot :~n 0xtf'rflill 'Jilriilhlp ~)() th,lt it,
will 1\(1 :lVlllLtLl,' for 11~f' by r(lp0,ltpd pr-ocl'il\tl-(' (~dl1:;.

Nf) tic I • , " () \. fI VI' r, how t. h (\ PI It t {' I n wII i (: h i ~; t h r" v ttl nI' () t
th(~ m,d n'-pL"olJCl\li\ v'\f'i,dd.f' T·i\l. p,~'!' Cdll C,\\I~)p a~;~)iqnll:(lflt:; t' ()
t h t: i n t f' r n ;t 1 f n!" m;1 '\ V,} !' i (1 t, 10. n 11111 e (~ C ,"', Nn d n !1 l' ~) ~. L('
<111 (l i t i () nali n t p r n Cl] v a r i ii h 1 n n (1 /T1 ('.~ C" \oJ i. t h i. nih(\ P ld. TN ()

6A. Pr.ogrammer-defined Procedures

procedure. The pattern PAL~PAT calls for imme~iate

assignment to what0vpr variabl(~ is Cl:rrentJ y rpferred to hy
the name CH, and conGitional assiqnment to whatevp-r variable
is currently referred to by the name CAND -- it specifips
nothinq abollt \:hicIl variables those must be. If Pl\T. .. PAT is
used in a statement of the main proqram, then it will cause
assignments to the main-program variahlps naMe~ CH and c~~n.

At a call of the PALIN 0 procedurE, though, those two names
are mad~ to refer to different variables~ internal to th0
procedure call; so if PAL.PAT i.-3 used (as ahove) in a
statement within the ho~y of PAtIN(), it will cause
assignropnts to the two variables internal to the call.

Side-effect.s of Proc2ol1res. ~lust ·as thflre are sometimps
reasons--for--making--reference- to ~he values of extet"nal
variables, so are there reasons for altering their values a~

well. A proced\lre call which alters the value of a variaiJle
not i n t erna 1 tothe call issaid t 0 h d ve a it sid 12- c~ f f (~c t. "
This terminology exists because of the presumption that the
fllain effect of a procedure is t.O I."etul~n a val~le Ot" to dir.ect.
the f 1 I.) W 0 f cont r 0 1: i n fa c t , h0 \II e v(~r, proceo U t' 0 S a r-? (} f t. "=' n
written solely for the purpose of producing side-effects.

One reason for defining a procedure which proouces a
sidE-effect is to k.eAp some sort of record of occurr€>nccs
inside and outside of procedure calls. For instance, the
CQUNT() procedure presented earlier could be chanqed so that
in addition t.o its former action of t:'pturning as its v~l\lp.

the numher of instances of some pattern within SOIDe strin~,

ita1 S 0 increm e n t san e it t erna 1 co u nt e r by t hat n'1 mbe r. '1' his
nev version of COUN'IO, TCOONT (), could be writ.tpn as
follcws.

DEFINE ('TCCUNT (PA'T' ,LINE) " t PR.TCOUN'l") (END.TCOtT7~Tl

PR.TCOUHT LINE P~T = NU!.!.. F(OUT.TCOUNT)
TeO UNT = 'T CO lJ NT + , : (PR• Teo [1 ~l ")

OUT.TCCllNT TALLY _. TALLY + TCOtlN'I .: (RETURN)
END.'ICCUNT

Asi1e from the systematic replacement of COUNT by
TCOUNT, this procedure d~finition is the same as t.h". t. of th~

first vE1rsion of COUNT (), pxcept t.hat beforr~ returning th0
pr0ce~ure increm0nts the value of the external vdri~ble

1'~LIY by thE' valup of the result variable. Since fA-LLY is
not an internal variable, its value Cdn be increase~

thrcughout a proqrarn over rppeated calls to TconN~ (), an~

thus reprpsent a total of th~ results of many invorltions of
t.hiit pl:oceourp; for that. matter, 'fALLY miaht ?I. 1so he
incremcntcrl by othpr assignments in the m~in program or hy
calls to other procedures as vell.

6Jl.. Prcqrammf.~r-defiJled Frocedures BS

The inclusion of the sid0-~ffect involvinq TALLY
specializes th~ COUNT (l pcoce(Jnr0~ and thr. ~:;~me recorn coq11
be kept without recourse to side-eff~cts by kpppinq th0
tally entirely in the main proqram, as in t.he SPqfilPl1t

RESULT =
TALI. Y =

CO U !~ T " 1. t f nECOR D)
TJ1.LLY .. RF.SnL'l'

and so forth. But that requires that the tally-incrementinq
stat~mpnt be writt.en once for cV0ry reference' to thr.>
procedure; i.f there are many references to COnN'T'(l in rt

pro 9r a Tn , t h p nthe whole t ~ x t. c a, n b 0' S h0 r t. n n0 (1 con ~-; i. (1 e r :=t b 1 y
hy v"riting th(~ statement ~ihich incr·(~!l".0.nt~1 1'r.LLY once i.n th0
TCeON!!) p~ocedure body anrt permitting the sidp-effect to
aceD r.

Anothe:- reason for changing the' value of an extprnftl
variable in a rroce~ure body i~ to tak0 advantJge nf ~n

out put ass 0 C' iii t i ()n \0: hie h t: hat V'l r. i (1 b 1 ('! fr, U y ha v (-~ • ASK r p ()
procedure Cdn h:l rl\~finf-'\l, fot:' (~x(-:f!'pl'~, t\.) tI~;kip" tlH' n 1 !1fl})0C

o f 1i ne ,c-; s r'"' c i f i C~'1 h Y its a r q 11 l~ P n t i)Y a ~:; ~:; j (/ n i n (1 t hp nIt 1 1.
va 1 u P. r. e p C ::s t. t~ .'11 Y tot h f? mdin - pr.. 0 q r.l.~ v (~x ill II 1. I,~ na In p:1 0 Tr P,\ .r •

rH",~KIP

END.SKIP

Dr FTN P. (, S f: T T) (N rH!) • , , r ~ . SKT. r")
~ T1 M =- GT (lH Pi .. C)) 11 fj 11 - 1
OUTPUT = NULL

(F 1m • S fC;- P)
F (:~ r"T1 nP i1 i

(p P.. ~):~ T P)

I f SKr P () i~) c a 11e din the seq uen c e

OUTPUT = HE~.D1

SI\TP(1)
OUTPUT ::: HEl\f'2

then the fir~t !':0a;linq, th0. thrc~ empty linps, 21nd lbp
SflCOHrl hp1.dinq ;lcr) all wr-itt0n to th~ Sdr:1P fi10, t.h!; on~

vlith which the var:.,-:lble OTfTPUT is associZl ted, sincp. tllf'
variahlp rpf0rr0(~ to by thl~ nar.1f:"\ OUTPlJl' is t hp Siif'!P hot h
insiof' anri outsidp. the p::-oc0riurp. r.<111. Note t.hat SKIP (l
"/0 U 1n not. 'J 0 1: l: c1~) i nh~ n'1 ~ rl j f nUT [IT '::- w('r (~ d ('C 1 ,1 r p. 11 tor co f (\ r.
to d V aria b1 (;~ i II t ~ r n .'1 1 tot h("\ Pr (': t"': () d urpea 11 l' r; inc e t h (\
a s ~ ccia t ion i s wit h t h f~ ma i n - r r () q r d r'l v (1 L i, '1 I) 1P , not wit h t} I (.

Biune OOTPtJ1'_

ou i t. I~ (1 d iffp r.' 4 \ n t m() t iv" t i () n for sill (' - p f fpc L; ~T i ~; p .~

wh0n a proc:C'<.lun' (lo~"'~; not h~111~) i1 fi;:('i n;t;T\(' of ,lr1 (~:\i i~[nd 1
v (~r i a b 1pin its pro ceo u r f:"'I hod V, h 11 t rat h 0. red n c h:t nq e t h ("\
VitI \IP~::; of (1 i r f(l!""(\ n t Vdr i It bl (") whpll it is ca J1 p.d wit h
rl iff (' r (' n t (1 r q tl :r c nt :; •

6A. ProgrammeL-~efined ProcedU~0S 8n

One way to' ~o this is to define a procedure which has a
strinq as its argument an~ which uses indirp.ct refprencing
within its Frocedure bony to refer to an extp.rnal variable
named by that strino, or by a string derivp.rl from it.
Consider the fol1o~inq STOTIE() proce~ure, who~e purpose is
to ~to[e the string which is its first argument as the value
of cOP. of a set of s'lccessi vel y-na med var ia bles; t hp na me of
the variable which is to be used is formed hy concatenatinq
the length of the string to be storel', th~n the value of th~

seccnn argument of STORE(), then the i~dex numhcr of th0
next available succe5sively-name~ variable of the set. If
the prccedure reference

STORE('CAT','LIST')

is ~ritten, for instance, and CAT is the first three-lett~r

word to be stored, then it will become the value of thp
variable named 3LIST1. If STORE{) ~ere called repeatp~ly

with the strin<J LIST as its seconrl argument., t.hen it "'01,10
store one-character strings as the valups of the variables
1LIS'I'1, 1LIST2, , $(1 'LIST' N), t\!.!o-character strings as
the value S 0 f 2T. I ST1, 2 JJ I ST2, ..., 1) (2 f LIS T' N), P. t c • The
~TOBE () proc8o ur'e further keeps track of t.he last used ir.d~x

nnmtcr fol:' each 'list' by storing these nnmherfl nS t.he
val u e s 0 f t. h e v ~ria b 1es 1I.. 1ST, 2LIS!, ••• , $ (N 'I~ I ST '). Not. (\
that all names formeo by th~ SlfORE (} procedure ncpend on the
value of its second argument, but all hegin with a numher
ann £0 are n~cessarily distinct from any names which may h~

written in the pkoqram text.

The definition of the STORE() pr.ocedure cou11 he

DEFINE (, STOR E (W 0 F0 , NAME) ., , , I: R Co STORE ') : (EN n. STOn ~)

FOR THiS S~ZE WQRD LIST
$ (S I Z E (W 0 q D) N 1'. MF) + 1

SIf 0 RET HEW 0 FDA S THE VAL UE 0 F 'IHE" r~EXT If V AnI ABt E
$ (SIZE (WORD) NAME $ (SIZE (WORD) NAME» = WORn

(RETURN)+
END .. STORE

..
* ADD ONE TO TH~ INDEX NUMBFR
PRe STORE $ (SI7F (WORn) NAME) ==

*
*

STORE() is thus ~ procedure which always succeed~,

returninq the null valuA. Its purFosP is always to havp th0
sidp-0ffect of ch~nqinq th~ value cf one of the ql:'~at many
ext~[nal variables whose names are dependent on thu various
values of its s~cond ar.qumpnt..

6A. Prcqrammer-def ined "t'rocpdnrC's 87

L~!~!~_Qf_IDt~InQl_!~Il~~!~~~When a procedure call is
to use variables athol' than those internal to itself, either
tore fer tothe i r val ue S 0 r t 0 ass i tJ nIH:')w val UP. S t. 0 the In ,

then the pa~ticular relation hetwe~n naces and variah10s at
a~y tim~ heccm~s i~portant. In th3 precedi~g spcticns th~

examr1es have ussumed that a procedure was called from (\
main progrc1 m, and thus ;}ll namps eit.her referr(}c1 to
variables intern.~l to the proc€<lure call, or cls(~ to
variables c.ssociated \lith thp. main program. Rut the
situation nay be more complicated than this, because on0
proc~dure may he called and th~n it may call another
proc0c1ur€;: if th n second procec1uI:'p makes refprencp to
v a r i rl. b 1escthe r t. han its 0 \I n i n t (\ rna 1 va r i rt b 1C' ~:; , t h p

pos~iblity ~xists that it may use a name which rcf~rs to onp
of the intern:l1 vi1riahl(~s of the proccdur~ ~'hich calleo it,
rat (I ~" r t hn f' t 0 i1 ma i n - proq ram v a ria hIe ext ern a 1 to hot h 0 f
them. Sometimes this is what was inten~0rl ~nd sometim~5 not;
car (-. m(1 s t be 1 (j ken t 0 insuret. h r- t t. h p n a I~ e s '1 sed h y
pro c € du r es 'r. i 11 a1 way 5 I ~ fer. tot h e i n ten r1 e rl va ria b1 e s •

The nurrbpr of S0.t.S of internal variab1f~s which hi1ve
heccme tpmporarily accessible at any point in time durinq
(~xccut.ion is termed the "IAvel·· of execution. I-Thf.:.n d proqt'am
b Q q ins c x t~ C' uti nq , i tis a t 1 Po V e 1 z e r 0 a 11 d t. h PoSt t1 t (! T:l0 n t s
(-l Y. celt t. f~ '1 a t 1f> II C 1 z c r 0 are the t. e c h n i c a 1. 0 C fin i t ion 0 f t h (\
main p~oqram. I~ a statement of the main proqram calls a
pro c € i1 u r e , thE- S tat e mt~ n 1~ S 0 f t. hat r roc e d ur t! 's bod Y \II i 11 h e
executed at. lev()l on~: if that proccc1ure call[j a s('concl
procE r1nre bf'for(' returning, then the stat.empnts of til"
seccnrt proc(~dure's body will be (~xecllteo at. level tuo. WhPil
the second procedure does a return, the first proceiurp will
resume expcntion at lev~l one; wh(~n it r~turns, thp rni~ln

pro<1ram will rf?sume execution at. level zero. It may thpn
c a 11 a not h f' r p roc p d u r (~ \" hieh ',: i 11 e x pcu t.cat 1eve Ion (\ , d n (1
so forth. !l.r.y nnmber of lev0.1s '!:'.r.y he att.i-linen; therp is nc
1eve 1 lower t han z e r 0 , how ~ ve r , so any a t. t e fit pt t 0 ci 0 a
return from a statement of the main program (caused by
allcwinq contrel to flow into a procedure body by acci~ent

rather t.han thrOll<1h a procedure call) vill causp ~n

exer::ution-tirnc error. Such an error r:;an b~ CtlU~iCi1 by
neglecting to write an nnconditional trilnst"er followincr d

DEFINE () procedure in any of thf:' above examples.

l\ t diff e r p nt t i rr. P.saproc e d urpm (=l y be {.:"o y. ('IC lJ t P. Ii ~ t
d iff (' r (1 n t. 1 eve I :. , d c pen (1 i nq () n t II P. I p nq tho f t. h (l <': h a i n 0 f
calls hy which it was r0acherl. the only Chi1nq0 in PXPc\ltineJ
at diff~Lent l(~vels is in the variablc::'s to which namps
refpr. A proceduro pXQcuting at If.~v~l t.ltrep, for (!}(i'tmplp,
viI 1. b p (' x p r.uti n <J i n it n P. nvir c n m0 n .. i. n ~'h i c h me s t n;~ r:1 (~ S
t 0 f 0 [" toma i n - pr oq r ~ m v d r i it b1 P. S , hut s () rn (~ n a m(' :, r (~ f 0 r t. 0

6A. Programmer-defined Procedures 88

variables internal to whatever procedure call is at level
one, scme names refer to variables internal to whatever
procedure call is at level two, and some names ref~r to its
own internal variables at level three. If this same
proc€~ure is later called directly from a statement of the
main proqram, then all names except those of its own
internal variables will refer to main-program variables.
This difference in environment must be considered to assure
that a procedure ~ill refer to and assign values to thp.
intended external variables, no matter from what level it is
called and no matter which procedure (and thus what names of
internal variables, are at levels below it in any particular.
chain of calls.

As an illustration of the same name referrinq in
different environments to variatles at three different
levels, consider an improved version of the PALIN()
procedure, PALIND 0, which would delete all spaces an~

punctuation characters from its argument before testin~ it
for being a Falindrome, thus allowinq str.ings of the form
DOC, NOTR. J DISSENT. A WAST NEVER PREVENTS A FATNESS. I
DIE! eN COD to be accepted. In the complete proqram below
the name CAND is used to refer to the trimmed record rea~

frcm the input file, to the formal variable of the PALINn(l
procedure, an~ to a formal variable of thp- DELET~()

procedure which is called by the PALIND() procedure to
perform the deletion. Nevertheless, there is no possibility
of the name CAND referring to a variable at the wronq levp,l~

within the PALINDO procedure (in this example) it always
refers to an internal variable at level one, while within
the DELETE() procedure it always refers to an internal
variable at level two. The level zero variable named C~ND

can thus be referred to only by statements of the main
program.

DEFINE('PALIND(CAND)CH','PR.PALIND')

: 5 (R ET TlR N)
F (FRF.TURN) 5 (LOOP. P.~LIND):

SET OP PATTERN NEEDED BY ~HE PAIIND() PROCEDURE
ASSIGN IT ro A MAIN-PROGR~M V~R!ABL~

PAL.PAT = POS(O) LEN(1) $ CH RTAB(1) • CAND *CH
: (E~!D• P A1.. I 1'1 D)

*
*
*
+
...
* CALL DELF.TE() TO REMOVE SPACES AN~ PUNCTUATION FROM ARG
FR.PAtIND C~ND = DE1ETE(ANY('o.,:;'),CAND)

** PFOCP.ED AS IN THE P7\tIN () PROCEDURE
LOOP.PALIND LE (SIZE (CAND) ,')

CAND PAL.PAT
tNt.PAtIND

*

6~. Prcgrammer-nefinerl Frocedures 89

+
•

DEFTNF.(' DELETE(PAT,CAND) t, 'PR.DELE1'E')
: (END. DELBTE)

* RFMOVE ALL PATTERNS FROM THE CANDIDATE
PR.DELETE CANt rAT = NULL

DEIETB -= C.l\ND
····

S (PR. DELETE)
(RET URN)

fND.DELE1'E

** ~AIN PART OF PROGRAM

** READ ALL RECORDS EUT PRINT ONLY THE PALINDROMES
READ CAt~D = TRI~1(INP(JT) : F(END)
PRINT OUTPut = PALIND(Cl~ND) CAND : (READ)
END

In this proqram the two DEFINE () sta temen ts, th0.
assignment to PAL.PAT, the READ statement, the PRINT
statement, and till? END statement constitute the complp.tr~

main program. These statements are executed in the or~er

specified hy th0 go-to's until an attempt is made to perform
the assignment in the PRINT statement; before this
assignment can occur, the value of the call to the PALIND(l
procednre must b0 ohtainerl. Thi.s call catJs~s the \'ariahle
na In € d CAND, i n t P. r nil 1 to 1 p vel 0 ne, t 0 be ass i <J n i~ (1 t. he ~; amp
value as t.hp mFtin-progral'1 variahl~ CAND, t.hat. is, thp
candidate to he test0d, and a transfer to be taken to
PR.PALIND. Before the assignment specified in this statement
can l:e performed, howev('r, a call to the OELE'rEO rn:-ac~vlu[0

mus t t e proc esse d • This c a tl s e s .: he va ria hlp. IV1 m8 d C ldJ n
internal to the lE~vel two call of rEI.ETE() to be assignp(l
the same value as that of the level one variable CAND, thn
strinq to he tested. Thls string is searcheo repeatedly for
spac~s and punctuation charabters and when all have heen
deleted the resulting, possibly shortened, ~trinq is
returne~ to the statement PR.PALIND where it is assiqned as
the new value of the level one variable CANO. The value of
this variable is then searche~, perhaps repeatedly, for th~

PAL.P~T pattern; each time the search is successful, the
value of the level one variable Cf\ND is shortpnpd by the
los~ of its first an~ last characters. If the candi~ate i~

i n rl € e Ii a pal i n ci r 0 In P , t. h(\n t. he fin a 1 val t1 e 0 f t hl~ 1(' vel 0 n('
vari~hle CANO will lip a st.r.inq of oOP or zero chardct.pr~;,

the P f\ LIN 0 () pco C (~ dII ·r e wi 11 t a ke the s tJ c c e s s n~ t. urn c1 n rl
t ran s f ~ r h ct c k tot: hcst '1 t. ~ m~ n t. 1 a he11~ (1 PRI NT. Hpre t. h('
valuf' of th0. }pvp] 7.ero variahlp ndmed C}\ND, thp oriqinl1
~ t r i n q (1 f) i t W,1 :; I' (I a (~ fro m t la (\ 1. Jl put f i 1 e , i s P t. j n t (I (1
wh ~Hle v {~r P1\ L 1 Nn () ~; 11 CC p (-~ (15.

6A. Prcgrammer-defined Procedures

output from this program could he strings such as

CIVIC
SUMS ARE NOT SET AS A !EST ON ERASMUS.
ROTeR
DEI FlED
DENNIS AND EDNA SINNED.
.*. ** **** *** ** *

90

There are two different ways of classifying variables,
which are useful in different descriptions of procedures. On
the one hand, there are main-program variables, at level
zerc, as opposed to the internal var.iables at hiqhe~ levels;
it is the level zp.ro, or main-program, variables which havp.
the lasting values associated with all names, while internal
variables at all higher levels become accessible only
temforarily during procedure calls and are initialized anew
at each call. On the ether han~, from the viewpoint of
discussinq any particular procedure calir the distinction is
between names of internal variables which are always its
own, as opposed to external variables which may be differ~nt

variables when the procedure executes at different levels.

The important special case in which these two
descriptions are equivalent is for procedures executing at
level one; at level one, the external variables are all
main-program variables. The fact that external variables
cannot he guaranteed to be main-picqram variables at level
two and above without a painstaking check of the nam?s of
all internal variables through all possible chains of calls,
is one reason for avoiding unnecessary references to
e~ternal variables in procedure bodies.

The_~§~2!_NR~TURN_1Q~~!Q£n_~_!~iab!~~Any proce~ure

call which returns a non-null string (or an object of
datatype Name) may occur to the left of an assiqnment sign
as the operand of an indirect referencing operator. This vas
indicated in Chapter 5 with the rule

$SIZ~ (WORD) = $SIZ E (WOl1D) .. 1

and may be further illustrated by the rule

$COUNT (ANY (VOWELS) , WORD) -= $COUNT (ANY (VOWELS) ,WORD) + ,

which adds one to the value of the variable named by the
number of vowels found within a word. As another example,
the statement

6A. Prcgrammer-defined Procedu~es

$THIN (INPUT) = LINE1 1" (DON F)

91

assigns the value of LINE1 to the variable named hy th~

characters of the next trimmed data record, or causes an
execution-tima error if the trimmed reco~d is null.

Proqrammer-defin~d procpdures can h~ writtpn spprifi­
cally for the purpose of retnrninq a st.ring which will b~

used as the cperan~ of the $ oppratcr to rpturn a varia~le.

Consioer, for example, the prcblem of rl0.t~rmining the first
null-valued "'ariable of the set LIST1, LIST2, ••• , ${tLTsT'
N}, descrihed in Chapter 5, and then assigning that variahle
the value of the next data recor~. A procedure nampd
NEX'T NU I.. T. () In i q hthe ~ r itte n tad e t e r nl i n('\ the f ir s t nu 11 -
valued variable as follows.

+
PR.t:EXTNULL

...
END.NEJ<TNULt

DEFINE (. NEXTNU1L (NANl) tP,' PRe NEX11 NTLI.')
: (Er~ D. N}~ X7 Nr; I~I,)

N = N + ,
NFXTNUIL = InENT ($ (N~~E N) ,NULL) Nl\~E N

: S(JJP.'rURN) F{PR.NF.X'T'NUr..L)

The NEXTNUIL() pl'ocp.clure cannct fail so it may b(~ us~:l

in a statement of the form

$NEXTNULL('LIST') = TRIM{INPUT) : F(NOOf\TA)

The procedure is called with a string-valued arqnnpnt
refresenting that part of the name which is common to all
the variabl~s. This string is concatenat0rl to the valu0 of
the variahle N internal to the proc~dllre cflll, and the $
operator is applied to the result cf this concatpnation to
return a variahle. If th~? valu~ of this variable is null, f1

strinq representing the name of the variable is forme~ by
conc:ater.ation and assiqned as the v~1t1(~ of the rpsnlt
variable; this r;tring is retnrned as the va lue of the
proce~ure call where it is used as the operand of thp $
operator which returns the variable n~edcd to perform the
as~iqn[ent.

Since N is declared as intqrnal, it is assiqned th0
null valup ('vflry ti.me the NEX'rNtlLI. () procedut'p. is Gallo(l,
hence the s0arch for the "next." vclri ahlf.:' C\lways heqins from
on 0 • Tf the s P. ;1 [' C h wf' r p t. 0 b(> q i n fro In til (l val up q i. v p n \1 t it t~

last time t.hp pr-ocP(ll1[(:' rpturne c1, i.po., from t. hp 1(1~)t.

va r i ii b1 €I 10cat ~ d , t hp n N ~ h () u 1d net. be (10 C 1. a r p (1 it sin t C' r nCl 1
~o that. it would retain its value from ann proC(:,rlur0 call to
the next.

6A. Prcgrammer-defined Procedures

A procedure can be caused to return a variable, rather
than a string which can be used by the $ operator to r~turn

a variable, with the use of the name return NRETURN. This
return may be used only if the value of thp. result variable
is a string (or a Name); it effectively applies the $
operator to the value of the result variable, causinq thp
variable named by that value to be returned as the value of
the Frocedure call. Using NR~TURN, the NEXTNULI.() procedure
may ~e vri~ten as follows.

DEFINE(·NEXTNUtL(NA~ElN·,'PR.NEXTNULL·)

+ : (END. NEXTNULL)
PR.NEXTNULL N = N + ,

NEXTNULL = IDENT ($ (NAI1E oN), NULL) NAME N
+ : S(NRETURN) F(PR.NEXTNULL)
END.NEXTNULL

This version of NEXTNULL() is exactly the same as its
predecessor except that NRETURN has been written instead of
RETnFN in the last statement of the procedure body, causinq
the variabl~ named by the string formed by concatenatinq the
value of NAME and N to be returned, rather than that strinq.
A reference to this new NEXTNOLL() procedure would have the
form

NEXTNULL ('LIST') : TRIM (INPUT) : . F' (NODAT A)

The $ operator is now not wanted before the procedure
reference since NRETURN has effectively applied it already.

NRETURN is provided for convenience only; its effec~

may always be obtained by using RETURN within the procedure
body to return the name of a variable, and by placing a $
operator directly before the proceoure reference. Further
examples of the use of NRETURN may he found in Chapters 7
and 8.

Ih~_Af£11jl__£~Q£~Q~~~~ A procedure reference in a
program text is composed of a procedure name followed
dir€ctly by an argument list enclosed within par~ntheses.

Although these arquments may be represented by arbitrarily
com~lex expressions, which when evaluated yield appropriate
values, the procedure name may not be so represented hut
must be an identifier.

There are some applications, however, in which the
programminq woulct he much simplified if one could indicatp
qenerally, rather than specifically, .which procedure is to
be called. Consiner, for example, a series of procedures
named FIX1, FIX2, FIX3, etc., each onp. designed to "fix" a

6A. Programmer-defin~d Procedures

word of the 'indicateo length. ~ procenure call somp.thir-q
like $ ('FIX' SIZF.(WORD)) (WORD) is what is npederi in orrler to
call the appropriate procedure for any given woro, hut this
expcession is syntactically incorrEct.

Assigning an expression repres~ntinq the procedure name
to another variable, as in

TEMP = 'FIX' SIZE(WCRD)

and then applying the $ op~r.ator as in $TEMP(WOnO) qivp.s an
eXfression which is syntactically correct hut doos not
produce the desired result; in this case the procedure call
TEMP(\JORD) is evaluat.ed, and its value t1S(~r1 as the oppranrl
of the $ operdtor. (Of course, if no procedure TEMP 0 wprp
defined the most likely case -- an execution-ti~p. error
would result w~en it was called.)

A way of calling a procedure, in which the nam0. of th~

proceoure to be' called is deterfilined at· execution-ti:--IP, i~,

provide~ by thp predefined procedure APPLY() whose first
arqGm~nt may b~ any expression whi~h yields a string naninq
the procedure to hf~ called, and whose r(·.~maininq i1.['CJumpnt.~-;

arE any expressions represent.inq the argument.s t.o bn
sUfr1ied to that procedure. APPIY() mdY be applip1 t.o
predefined procedures as well as to prcgrammer-oefin0rt onQS;
thu~

WORD = APFLY('TRIM',INPUTI

is equivalent to

WORD = TRIM(INPUT)

and

OUTPUT = APPLY('LONGPP',STRING1,STRING2,VOWEL~)

is Equivalent to

OUTPUT = LCNGER(STRING1,STRINr,2,VOWELS)

More usefully, the designation of the' appropriatp
prOCEdure from th0 set FIX1, FIX2, FIX3, etc., coul~ be ma~e

with t.h~ evaluation rule

APPLY C'l-'TX' ~T7.E (WOl\n) ,WOlIn)

which is ~quivdlent to th~ rule

6A. Prcgrammer-defined rrocedur~s

FIX) (wono)

94

if WCRD has a value three characters long. Similarly,
executing the stCttement

APPLY ('IRIM (INPUT) ,ARG1,ARG2) .. F (ERROR)

calls the procedure whose name is specified on th~ next data
record, giving it the tuo arguments ARG1 and ARG2.

The value returned by APPLY() is the value returned by
the procedure which it calls, and APPLY () returns with
whatever return (RETURN, NRETURN, or FRETURN) is used by
that pIoceduI:'e.

Note that APPLY(} is defined to have a varying rather
than a fixed number of arguments, always one more than that
of the procedure specified in its first argument. However,
the usual rules about missinq and extra arguments pertain:
·if the number of arguments beginning with the second exceeds
the number of formal variables specified for the procedure
being call~dr the extra arguments are ~valuated but
otherwise ignored; if there are fewer arguments t.han formal
variables, each remaining formal variable is assigned the
null value.

Although the name of the procedure may be representeo
by an expression of any complexity, that expression must
yield a string which is an identifi~r when evaluated. This
restriction comes about because all the names in the first
argument of the DEFINE{) procedure must be identifiers; all
predefined procedures, of course, have names which are in
identifier form.

Qsing~_1iQI~II__Qt--f£Q£~~Qr~~ Most tasks vhich a
program 1S to perform divide themselves naturally into a
series of smaller tasks, some of which aI:'e so basic as to be
repeated many times durinq the course of the program. If
each tasic part is written as a procedure, then the
organization of the proqram can be clearly seen; the body of
each procedure need occur within the program text only once,
but it may ~e referred to whenever it is needed. Once a
prccenure has been thorouqhly tested, it may form part of
the programmer's "library" to be used, just. as th~

predefined procedures are used, as a part of many different
programs.

The complete program text below begins by providing the
library of proce~ures to which it will refer; with th~

exception of the PRINT() procedure, these pI:'ocedures have

61~. ProqI:'ammer-d(~fined PrOCe~'lrp.s

all occurred earliec in thi~ chapter witn the samp.
definitions. After. the li.brary comES t.he main progr.am, which
consists lar.qely of references to these proc0du~es~ Thp
purpose of the pr.oqram is to read data from the input filp,
isclatc the words, and st.orG thEm in "lists" accordinq to
their size. When all the words hilV€ heen read in anci storeo,
the lists are printed, in crder. of increasinqt.ro1:'d SiZ0,

with the words in each list in the order in which thPV were
encountered. In addition, each word of a list which is a
palindrome is underlined by printlng a row of hyphens
beneath it on the succeeding line. At the end of each list,
nl}m}~ers are printed indicating the number of words in the
list and tile nurnbf~r of palindromes; \!hen aJ.l the lists havp.
been printeo, the total numbflr of WOJ:rJ.s and of pf\lindromes
is also providp.~.

'I' hem a i n p r uq ram h P- gin 5 bY d e te1: min i n g the ch ar ar. t. (~ r s
which are to be consioered as punct1tCltion hy readinq th0ffi in
frem the first reGord of t.he input data. It then proceelis t.o
~ead each subsequent data record, which consists of wor~~

seFarated by s~aces an~ punctuation and appearinq in no
fi x(:(1 forTTlar., except that no word if) broken across a recor:l.
As Each word is fO\Jn8, the S'I'OFF:() pl'ocectur~ is inVOK()(] ".0

store the worr} in the list appropriat~ to its sizp.. Hh(ln ~11

the wcrds have beAn processeci, the PTIINTO proc~durrl is
called to print the lists, short~st words first, an~ to
unclerline each word which is a p(~lindrome. 'flIp PRIU1' (}
proc e d urei n v () k est he P l\ 1 T N (} proc € rll'T e t 0 (1 E~ t 0. L In inc \1 h ~ ~ t. h (\ l'

or not the hord is ,~ palindrome, thp. REPEAT () proccdur0 to
farrr an unrierline of the needed length, (iud thp. SKIP ()
proc e d nret 0 proauc e b1a n k 1 i n p s • The PHI NT () P ['0 C 0. n'1 r I~

counts the words anfl palindroJTiPs occtlrrinq in ~ach list. hy
incr~nentinq the v~lues of the internal variahles W nnrl P,
pr.inting t.heir values befcre it returns. It. also a0.ds to th0
tot a 1 co un t 0 f W0 r d sand pal i n (1 r 0 ro (t s by i. n C 1:' e in \~ Ii t i. n q Lh p

valups of the m~in-prograrn v~riahles WORDS an~ PALINS; thes0
values persist and increase throuqhsucccssive calls to
PRINTO.

* FROCEDURF To CONCA!ENATE A STPIN~ OR PATTERN N TIMES

*
DEFINE('REPEAT(N,OBJECT)' ,'PR.REPFAT')

+ (END.REPBAT)
PR.FEPFAT N = GT(N,O) N - , F(PETORN)

REPEAT - TIEPg.\T OPlJPCT (PH. RFPfl\ 1')
fND.RFPEAT

** 1~S' PROCEDURE TO FTND PALINnRn~ES (FkILS IF ~OT n PALTN)

*
DEPINE(' PALIN(C1\ND) CU', 'PRe PALIN')

6~. FrogramMer-defin€~ Proc€dur~s 96

SIDF-EFFECT PROCEDURE TO TO SKIF N LINES ON OUTPtiT FTLE

S(PRTURN)
S (FR• PALIN) F (f RETtl RN)..

* SFT UP PTt.TTERN N'F'fDED BY THE PAlIN () PROCEDUTIE
* ASSIGN IT TO A MAIN-PROGRAM V~R!ABLE

PAL. PAT = pas (0) LEH (1) $ CH RTAB(1) • CAND *CH
: . (E NO • P AI, IN)

* IF C~NDTDATE NOU CONSISTS OF 1 eR 0 CHARACTERS, SUCCEED
* OTBFRWISF. APPLY THE PATTEFN AGAIN
PH.PAIIN LE(STZE{C1\i~D) ,1)

CAND FAL.PAT
FND.PAlIN

*
*
*
PR.SKIP

oEFIN E (t SKI P (1\ U~l I: , , PR. SKIP , l
NU ~~ = GT· (NU M,0 l NU M - 1
OUTPI1'I: = NULL

····
: (EN D. SK IP)

F (RETURN)
(PR. SKI P)

END.SKIP

** SIDE-EFFECT PROCEDURE TO STORE WORDS IN LISTS BY SIZ~

* DEfINE('STORE(WOnn,NAME) , ,'PR.STOR~') : (END.STORE)

*

STOFE THP WORD AS THE VALUE OF THE "NEXT" VARIABLE
$ {SIZE (WORD) NT\ME $ (SIZE (WORD) NAMF» = WORD

: (RETURN)

• ADD ONE 10 THE INDEX NUMBER FOR ~HTS SIZE WORD LIST
PR.STORE $(SIZE(HORD) NAME) = $(~TZE(WORD) NAME) + 1

*
*

END.STCRE

** PBOCEDUR~ TO PRINT ~ORDS, UNDRRIINE PALINS, KEEP COUNTS

* DEFINE(tpRINT(N,NAME) M,Yl,F' ,'PH.PRINT')
+ .' : (END. PRINT)
PR.PRINT OUTPUT = 'LISTaOFo' N i-LETTERaWORDS'

SRIP(1)

** ~EST FOR END OF LIST - IF NOT END, PRINT NEXT WORD
UP.PBINT M = LT(N,$(N NAME» M + 1 : P(DONE.PRINT)

OUTPUT = $(N NAME M),.
* ADD ONE TO THE WORD CCHWl' FOR THIS SIZE

W = W + 1

** ONDERLINF WORD IF IT IS A PALINDROME
ourrpUT = PALIN(OUTPUT) REFEAT(N,'-') : F(UP.PRINT)

** ADD ONE TO THE PALINDROME CCUNT POR THIS SIZE
P = P + 1 : (UP. P RI NT l

•* ALL wonns HAVE BF-EN PRINTED - PRINT THE COUNTS

6A. Prcgrammer-defined Procedurps 97

I NIT I AI. TZB PY oF."". r. RMIN I NG T BE PUN CUT A1'1 0 N CH A R l\ C1' P, R5
AND PORMING A WORD-FINDING PATTERN

PUNC = 'a' TRIM(!~Pf11') F(FRROR}
W0 I, D. l' AT - BREA K (P nNC) • W0 RD SPA N (P nNC)

(RETURN)··

DONE. PRINT SKIP(')
OUTPUT = lJ 'ono' N '-lETTERoHORDS'
OUT PUT = IDE NT (P , N{J t L l ' 0 rJ D rJ • N • - r. F. TT ~R •

+ 'or=ALINDROME~': S (H. PRIN'f)
OUTPUT - P 'uou' N i-LE'rTERoPP.lINDRO!1F.S·

** ADD THES~ TOTALS TO THE COUNTS FOR ALL SIZES
PALINS -= PALINS + P

W.PFINT worDS = WORnS + w
SKIP(2l

END.PRINT

** MAIN PARI Of ,PROGRA!'1

*
*
*

F(LIST)··
* MAIN READ LOOP - GET THE NEXT RECORD
REAr RRCORD = TRIM(INPUT) '0'
** REMOVE ANY INITIAL SPACES OR PUNCTU~TION

REconD POS (0) SPA N (PH NC) = NULL

SIZE (WORD)

** GET THP t·;EX'I HORn
NEX'I~JORD R~CORn WORD. PAT .- NULL

** SAVF LENGTH OF LONGEST WORD IN MAX
MAX = GT (SI ZE (l~ 0 RD) , MAX)

·· F (I~EAl»

** ~TORE THE WOFD IN THE LIST FOR ITS SIZE
"STORE (WORD) (NEXTW0RD)

*
F (FINAL)··

OUTPUT = 'NOoOATA'

1FTIf ERE ARE W0 RnS CF L f NGT H N, PRI N'r T Tn: M
(DIFFER (T (N 'lIST') ,HULl.) PRINT (N, 'LIST'»)

(LIST)

+

*
'P,RROR
ENe

+

** PRTNT SO~E FINAL STATISTICS, PRFPARFn BY PRINT()
FINAL OUTPU'r = 'TOTA InNllMBERaOFnWOHnSa--n' ilORDS

OUTPUT = 'TOTALnNtJMRERoOFnPALINDt10MP.Sn--n' PALTN~

(EN D)

* PRINT THE LISTS, SHORTEST ON~S FIRST
LIS1 N = LT(N,~AX) N + 1

*
*

6A. Prcgrammer-defined Procedures

If the input to this program were the question

DID !HE NAME ADA REFER TO A VARIAEIE AT LEVEL 1 OR LEVEL 2

then the output would be as folIous.

LIS! OF 1-LFTTEB WORDS

A

,
2

3 1-LETTER WORDS
3 1-LETTEP PALINDROMES

LIS! OF 2-LETT£B WORnS

10
hT
OR

3 2-1ETTER WORns
o 2-LETTER PALINDROMES

LIST OF 3-Lf.TTER WORDS

DID

TIlE
ALA

3 3-lETTER WORDS
2 3-LETTE~ PALTNDFOMES

LIST OF 4-LETTER WORDS

NAME

, 4-LETTER WORnS
o 4-LETTER PALINDROMES

98

6A. Prcqrammer-oefined flroc(~dllres

LIS! OF 5-LETTER WORDS

REFER

LEVII

LEVrL

3 5-LETTE~ WORDS
] 5-LETTER P~IINDROMES

LIS! OF 8-LETTEF wonns

V~RTAELE

, 8-1ETT~R WCBDS
o 8-IETTEn PALINDROMES

TOT~1 NOMBER OF ~ORns -- 14
rp 0 T In. Nn f1 B F H 0 F PAL t N~ RUM ES -- A

qq

100'

1A. ARRA YS

The programming of some problems can be greatly
simt:lified with the use of sets of successively-named
variables, such as those described in Chapters 5 and 6.
There, indirect referencing was used to ref~r to variables
with some set of names such as Lt~T1,LIST2,••• ,$('LIST' N).
The variables could be thought of as forming a set because
their names were composed of two parts, where one part was
common to all names of the set and the other part varied;
the variables were said to be successively-named because the
varying part was an integer which differed by one for each
memter of the set. The notion that the variables with names
differing in this. way were loqically associated was, of
course, simply a convention adopted by the prog~ammer. But
the idea of a set of variabl~s associated together, with the
selection of anyone of them dependent ou the value of an
arithmetic expression, is so useful that data structures of
this sort are predefined in Snotol, under the name of
Arrays. An array is used very much like a set of variables
with successive names, except that the convention that the
variables constitute a set is net the programmer's alone,
but is shared by the Snobol system. Thus it is possible to
treat the set of variables as a single aggregate in some
cases, and to make reference to specific variables in the
set on other occasions.

~L~ati~g_~n-!~£21~ An array is created by executing a
call to the predefined procedure ARRAY(). The ARRAY(}
procedure has a single string-valued argument, which in its
sim~lest form is used to specify the number of variables of
which the array is to be composed. For example, execution of
the rule

LIST = ARRAY('10CO')

causes an array of 1000 variables to be created; this array
is returned as the value of the ARRAYO procedure and the
entire agqregate is assigned as the value of the variable
named LIST.

The variables forming an array are distinct from other
variables in that they do not have names which can be
written directly in program texts. Rather, they are usually
represented in a program text by expressions which are
comFosed of two parts: the first part consists of the name
of a variable whose value is the entire "family" of
variables that make up th~ array; the second part, called
the "selector," consists of at least one inteqer-valued
expression, called an index, enclosed within square brackets

\

7A. Arrays '0'

and imme~iately following the family part of the namc.
Consecutive integer selectors are assigned to each variable
of the array and serve to select a particular varii'lhle fr\.1m
the set. Thus variable number three of the 1000-variable
array which is the value of lIST may be referred to as
LIST[1].

When the rule

LIST = ARRAY('1000')

is executed, the 1000 variables LIS1'(1], LIsrr[2), ,
LIST[1000) h~come available for use. Each of thps~ vari~b10s

initially has the null value, like any other variable, wh0n
the array is create~. these variables may acquire new values
by the usual means of assignment, as in the statements

LIST[1] = TP. 1M (T NPUT) .. F(DO~JE)

LIST[1} POS(O) SP\N('tt') = NULl,
and

RECORD ANY (VOWELS) LIS'I(7] P(NOVOHEL)

Althouqh all variables of an array are oft.en assiqn0(1
values of the same dat~type, there is no requirement that
this be done: some may be assiqne~ String~ as values, an~

some Patterns, for instance; such a variahle may even ha~0

an Array as it.s valne, inclnclinq the at"l~ay of which it lS

itself a memher.

!r£~y_Tt.g.m§_~!l..9_1.t~!!l_]~ff!£!l£f'§.=..The variables fO!:"i.1inq
an array are called "array items": r.0ferenCt~S to thpsp
variables in program texts, exrtessions of the form LIST[Nl,
are called "item references." It is impor.tant. t.o rempmhpr
that the variablE's referred to by these item referp.nces ~o

not have name~ in the form of strinqs. 1hat is, the strinq
LIS1[1) is nQi the name of variable number one of th~ array
which is the value of LIST. For one thing, such a strinq
cannot be written in a program text to represent a name
since it is not in i~entifier form. Nevertheless, evpry
strinq is the name of a vari.ahle, so the strinq LTS'l'[1] is
indeed the name of some variable, which may he reprcsent0~

in a proqram text as $'LIST('1': howevflr, this variable has
no intrinsic connection with any array.

The variables with strinqs as names arp all available
to, a proqrammpt' when eX(lcution of a proqram beqins, on!} ~r.P

calI € d "n a t ur a I" va ria tIe ~~; in\. 0 n t r as t, va r i ab I e s whi\. h z, r p

array items must he explicitly cr0ut~~ hy a call to tliO
ARRlIY () proce(lure, and in consequpnce are callpd "crpc1ted"

1A. Arrays 102

variables. They have names which are not strings
necessarily, since every possible string is the name of a
natural variable. If the name of a variable which is an
array item is needed (so that it may he passed as an
arqurner.~ to a procedure, for example), a special kind of
non-string Name must be qenerated ty the use of the name
operator described toward the End of this chapter.

The family part of an item reference, LIST in the
example above, must always be an identifier and must refer
to a variable whose value is an array. However, natural
variables whose names are not in identifier form, such as
the one represented by $ (CHhR '*'), and created variables,
such as the cne represented by LIST(3], may be assigneo
arrays as values. Special methods, described later in this
chaFter, must then be useo to form references to the items
of these arrays. Note that references to all items of an
array are always formed with the use of a single name, that
of a variable whose value is the array to which they belong.

£Qm~~i§Qn_-!i!h-_lnQir~£!--B£f~r~n£iQg~ A set of
successively-named variables formed with the use of indirect
referencipg constitutes a sort of simulated array. These
simulated arrays have some advantages over the predefine~

array struc~ures provided by Snobol.

When indirect referencing is used, it is not necessary
to specify in advance how many variables will belong to the
set. That is, in the loop

NLOOF N = N + 1
OUTPUT = TR! ~ (INPUT)
$ (' LIST' N) = OUTPUT

····
F (ALLGONF.)
(~lLOOPl

the maximum value of N is determined only by the number of
data records read, which may vary with each use of the
program.

There is also no restriction that N be incremented only
by 1 -- any interval may be used, not necessarily the same
one cn each iteration of the loop. Thus the statement
latelled NLOOP above may read

NLOCP

or

NLOOP

N = N + 2

N = N + SIZE ($ (' LIST' N)}

or whatever.

71\. Arrays 103

Further, there is no necessity to use numeric valU0S at
all in forming the varying part of n name. Per exa~ple, th0
"successively-named" variables LTSTA, LTSTR, ••• :; LTSTZ
could be used by writ~nq the loop

F (DONF.l
S (LOOP):

..
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
CHARPAT = LPN(1) ., CHAR
ALPHA ClfARPAT = NULL
$('LIST' CHAR) = 't'RIM(INPUT)

LOOP

For that matter, there is no need fOL th0. varia!l10s of a
simulated array to have names which are obvioasly
"successive." 'rhus, the varyinq part of each name couin he
forrr.ed from a list of words which' might have no ohvious
relation to one another. tlsinq a word as a "scl"~ctor" of a
simulated array item provides much more information than the
use cf an often arhitrary number. T.i1stlv, no c1iffic'Jlti~s

arise if the "family" part of the names is not in irlE:~ntifipr

form.

On the other hand, there are some advantaqes to usinq
the Frede fin e dar ray .s t r u\~ t Ur (~ • Th(~ pI' inc i p() 1 0 n(l i s t hat
the array items are recoqnized as heing relatp~ hy thp
snotol systom, so t.he whole aggreqatp Ccltl bl~ aS5iqw'(~ a~-; ttl0.
value cf a variable, passed as an ar<!ument to a prOCe('\fl~0,

and so forth .. Also, the variables which arp drray it.pm~; rlrc'
distinct from all other variables sir.ce thl:~Y no not h;:lve
names in the form of strinqs, sc inadvertant conflicts of
va ria hl~ uSdge are easil y a voi den: an rl samet imes an it 0 i1l

reference in i-\ progra m text gi ves a more i nt ui ti ve pict nr o

of the process being proqrammed than does an exprpssion
invclvinq indirect referencinq~

An array is a particularly us~ful data structur n to
emFlcy when the numeric oeder of its iteulS is signifiC"aat,
e~g., when the n-th it.em of scree list js nee~e~. For oata
which does not lerlo itsp.lf well to being processed in +-("\rms
of numeric orderinq, other types of data stru~tures arp
prot-ably more useful. ~'ays of creating oat.a structurps of
one's own choosing are indicated in the following chapter.

l1ll!ii=Q.!.!1!fD.§i.Ql@l__~II~.YS. It. is oft~n intnitivp.ly
useful to think of the items of an array as being arranqp~

in reore than thp sinqlp oimension of the LIST example ahove.
One miqht want, for px:amrlctr to simulatE" the rnovC\s O!1 a
cheF:::hoarcl 1'y usinq ,~n RxR array whir:h is t.h(~ VrtlllP of rt

vari~blp nam0d BOl\Rn. Such a two-oiIl10n!;ionil!, 61~-it'pm arr(lY
coulr1 he created by e'<:ecutinq thp. r\ll~

1A. Arrays

BO~RD = ARRAY('8,8')

104

The first row of the chessboard could then be represented by
giving values to the itpms referred to as BOARD[1,1],
BOARD[1.2], ••• , BO~RD[',8]. The Froqrammcr is of course
frp.e to decide which dimension is to be thought of as
indicating the rows and which as indtcating the columns. If
he prefers the opposite convention, then the first rov woul1
be the items BOARD[1,1], BOARD[2,1], ••• , BOARO(8,1].

Similarly, a three-dimensional tic-tac-toe board having
a 5x5 square on each of its three planes could be simulated
by using the array created by executing the rule

TIC3 ~ ARRAY('S,5,3')

The central cell of this structure is the array item
TIC3(3,3,21·

Although it is difficult to symbolize or conceptualize
arrays of more than three dimensions, they present no
programming prorlems. For each new dimension, another number
within the argument of the ARRAY() procedure is needed for
the crEation of the array; similarly, another· index is
needed within the selector to form an appropriate reference
for any given array item. There are no limitations on the
number of dimensions which an array may have, or on the
numcer of items to be associated with each dimension.

Arrays of many dimensions ca~ be used to arrange data
elements which differ from one another along many numeric
scales. Each "dimension n is thought of as an "attribute,"
and a data element is assigne~ to a particular array item
according to th~ numeric value of all its attributes. Th~

data elements may then be accessed in an orderly manner
along each "dimension" of the arrangement.

The-!.B]'llJLPr.QcedJ!!:~~The predefined procedurp., ARRAY ()
requires a single string-valued argument which provides a
prototype of the array, specifying (implicitly or
explicitly) the number of dimensions the array is to have
and the range of index numbers which may be used to select
items of this array in each dimension. Unless otherwise
specified, it is assumed that the indexing in each dimension
starts with 1. However, if the arrays described above as
heinq th@. values of tIST, BOARD, and ~!C3 vere to be indexed
from zero instead of from one, but werp. still to have the
same number of items as before, this could be specified by
executing the rules

7A. Ar-ra ys

LIST
BOARD
TIC)

= ARPAY(SO:999')
= ARR~Y('O:7,O:7')

= ARRAY('O:4,O:4,O:2 1)

1() 5

The cclon within the argument is used to separate the loupst
index number from the highest in~ex number for each
dimension: the comma. is used to separate the diff0rent
dimer.sions from one another; no embedded blanks are
perrritted.

Negative numbers may be used within the prototype of an
array, and consequently within the selectors of its it0ffis.
Execution of the rule

NEGARR = ARRAY(-SO:-S)

creates a 4G-element array whose it8ffis may he referred to ~s

NEG ~ F F[- 50 1, NEG h RR[- 4 q], ..., NEG l\ RRr-s]. (Not e t hat t b (\~; t~

references are arranged, as always, in ascending arithmptic
order.)

Information about the ~ange of index numbers in each
dimE'nsion may be provided in term~ of any expressions 'which
give th~ desire~ numbers when evaluated. Thesp indlc05 may
be positivp, negative, or zero, but. thp. upper bounrl for ~ny

dimension must always be qreat.cr than or.- (.~qnal to tl~\~

corrE?spondinq lower bounn: consequently an array must alwrtys
be ccmrosed of at least one item. Thus the rul~s

ARRAY' = AInL~Y (SIZE (WORD1) I,' SIZE (wo~n2»)

AllRAY2 = ARRAY(M1 ':' N1 ',' M2 ,., ~J/.)

ARRAY3 = ARRAY (A + B I,' C + D)

may each specify the creation of a two-dimensional array, if
the expressions within the argument of each ~RRAV()

procedure have appropriate I\llmeri.c values at the time thp
rules are executerl.

Note that the commas and colons are place1 within
quotes to inoicate that they are literal charact~rs to hp
concatenated into t.he strinq being formed to provide th0
single argument. If the commas were not placed within
quotes, each comma wonln indicat.e thG presence of anothnr
argument for the ARRAY () procp.(lure; all arguments after t h0
first would te evaluated but ctherwisp ignoLp.~, sin~0

ARRAY{) rp-ql1ir0S only one arqument. Th(~ arLay procl?,ltU'0
ret.llrns as its value an array cr.-eiited to t.he ~;p8cificat"ions
of its arqument. Thus t hp vat" ia lIes f!rlmen ARI\ 11 Y', T\ nqA Y2,
ann AllRAY1 in th~ r\hove ~xample wou11 all bp Cis~';iqn~d v(~lu("~

of aatatype ~rray.

1A. Arrays 106

Selectors. Selectors may also consist of any
expressIons--;hich yield the desired index (or indices) when
evaluated. 'rhus

LIST[1]
LIST[A + B]
LIST(SIZE (TP-IM (eA RD))]
LIST[$I.IST[2 J]
LIST[LIST(I, !ST[2]]]

are all item references which may be used to refer to
variable number one of the array which is the value of LIST
if the expressions A + Band SIZE(TRIM(CARD) and $LIST(2]
and tIST(LI~T[2]lall have the value 1 when the rules in
which the above expressions appear are executed.

Although the prototype of the array is expressed as a
strinq, no~e that the selector of an item reference is not;
rather the expressicns representing the indices are
'separat.ed by commas, much like the arguments of a procerlure
reference. ?hus BOARD[X,Y] is an appropriate item reference
foz a two-dimensional array, while BOARD[X ',' I), which
specifies a non-integer index, is not. An execution-time
errcr will cccur if a non-integer results from the
evaluation of the index for any dim~nsion, or if the number.
of dirrensions indicated by the selector is not the same as
the number ~pecified by the prototype for that' array.

Pail~Qf-gn_I!~_Refgrg~~An attempt to evaluate an
item reference may fail, causing failure of the rule in
which the evaluation occurs. An item reference fails when
its family part refers to a variable whose value is an
array, but its selector yields an index for any dimension
which falls outside the range specified by the prototype of
that array. Thus the rule

OUTPUT = lIST{ N] ·· F (DONE)

~il1 fail and send control to DONE for values of N which are
leEs than 1 or greater than 1000 for the value of LIST
described at the beginning of this chapter. The simple two­
statement loop

LOCP N '= N + 1
OUTPUT = lIST[N1 ·· S (LOOP) F (DON E)

can therefore be use~ to print the values of all items of
the array referred to by LIST (provided these values are all
strings). Here the fact that the item reference can cause
failure of the rule eliminates the need for a statement of

the ferm

N = LT(N,1000) N ... i ·· P (DONF.)

10"

t.o terminate
programming.
array cannot.
since LIST
be pr.inteii.)

the loo~ an~ so somewhat simplifies the
(Note that the valu~s of all the it~ms of an

he prin~ed by a rule of the form OUTPUT = LIST,
has an array as its value, and only strinqs ~an

Often reliance en the failure of an item referenc0
rather thall on to.he failure of some test proceo.ure does not
sim(=lify thp proyrdUlmi.ng and may leau to loqiGi.11 el-COCS. For
examrle, the loop

FIl11 N :: N'" 1
LIST[N j = TRIM (INPUT) ·· F (PULL) S(FILL1)

will fail ann send cont.rol to PUl.I. (l) when the value of N
heccrnes grpater than 1000 or (2) yhen the data is exhauslp~,

wit- h0 nt ma kin q t h~ (0 ftc nnec e S 5 a r. y) dis tinc t ion bet we f-) n t. hp

two cas es • The (ilc t t hat ani t ~m ref ere nee can c t-\ 11 S0 f a i 1. 11 r p

ofther u1emu s tal Wii Ys be k. en t. in min ri topr ev p n t. t. tl 0.

writ.inq of rules which may fail for more that} onp rpaSOi\.

~g~1~1_£!QQ1~!!!.§__ £g!l!:~!lliD.g,__IlgL_S:Qf~r.~!lC:~:i.!.. It i:;
p0 ~ sib1e t 0 ass i q [. a n a r ray as the vc. 1ue 0 f a va riah Ie wh() S P

name cannot be rppresent~d in identifier form, eith0r
because it contains impermissible characters, as in

$'1\/1' :: ARRAY (' 1000')

or because it is a created variable, as in

LIST[1) = ARnA Y (f 1000 ')

or because it is ur.known, as in

$WORD -:: ARRAy{f1000')

Although each of the above rul~s creates an array of
1000 items anrl assigns it as the valu~ of some variable as
ina 11 p rc vi (J lJ S P X a 10 pIp s , t. h(\ i t Eo"' mS 0 f the s 0 a [' ray~; mit Y not
her P. fer r e i1 t 0 i nth ~ \) S \l a1 man Il e r , ~~ inc e t II p [' p i~;; It

restriction that the family part of an item refcrpJ1ce must
be a na me in i ~ en t i fie r for m• l' h 11 S i f 0 n\~ a t t e nl p t ~;, ;: 0 r t 11 f~

first two cases above, to write rules of th0 form

$'A/"[1] = 'IHIM(TNrnT)
and

7A. Arr.ays

LIST[r)[1] = TRIM (INPUT)

then compile-time errors result.

writinq, for the third case, the rule

$WORD(1) = TRIM(INPUT)

108

dces not result in a compile-time error, but does not give
the desired result either. Here, the operand of the inoirect
referencing operator is not the variable WORD, as is
desired, hut rather the item reference WOR~ 1]. The
evaluation of WORDf1, should cause an execution-time error,
since the variable WORD was intended as the operand of the
indirect referencing operator, and thus its value should be
a string or a Name, not an array.

All of these cases may be ~aken care of by simply
assigning each array to another variable, one whose Harne may
be Iepresented by an identifier. Each of the erroneous rules
presented before can thus be replaced by a pair of rules,
such as the following:

TEMP1 ::
TEMP1[1J

TEMP2 =
TEMP2[1)

TEMP] =
TEMP3[']

$' A/1 '
= TRIM(INPUT)

LTS'I[1]
= TRIM (INPUT)

$WORD
= 'IRIM (INPUT)

Note that assigning an arr~y to a second variable does
not cause a new array to be created, hut merely allows two
(or more) variables to have the same array as their values.

lh~ r'rE!1 () Pro£ed..Q!Q.!. The I'rEf1 () procedure prov ides
another method of referring to the items of an array when
the array has been assigned to a variable whose name cannot
be written in identifier form. The ITEM () procedure, like
the APPLY() procedure described in Ch~pter 6, bas a varying
number of arguments, usually one more than the number of
dimensions of the array involved. ~he first argument must he
an expression whose value is an array; the remaininq
arguments may be any inteqer-valued expressions, usually one
for each dimension cf the array, given in the appropriate
or~er. ITEM(} returns as its value (by NRETURN) the variable
specified by using its first argument to indicate a family
an~ its remaining arguments together to form a selector.
Thus the expression ITEM(LIST,1) is equivalent to the

1A. Arrays

expression LIST[1], an~ ITEM(EOARr,8,8)
EOARD[B,8]. More usefully, the rules

ITEM($'A/1',1) = TRIM(INPUT)

10 Q

is equivalent to

and
ITEM(lIST[1],1) = TFIM(INPOT)

ITEM ($WORD, 1) = TRIM (INFUT)

could all be used in place of th~ rules involvinq TEMP1,
TEMF7., and TEMP3, above.

A procodure referen~e to I~EMO may he written wherever
an item reference may appear. Thus the rule

OUTPU1 : TTC3[X,Y,Z]

may te written as

OUTPUT = ITEM(TIC.l,X,Y,Zl

with the same effect. ITE!1() fails, in just the "ay thct an
it e m ref~ r enc e fit i 1sri l t. hP. i nrl e x for any d i rn P ns ion ':1 j~ t h 1. n
the ~elector which is formed fa 11s out ~.:;i~~ e th (> r,"\ nq n

specified by the prototype of the array involve~.

Althouqh the selector part of an item reference must
consist of a list of indices separated by commas, as in
TIC3[X~Y,Zl, and may not be expressed as a concatpnat0~

string, as in TIC3[X ',' Y ',' Z], th~ ITP"1C) procedure
allows the s~lector to he represented by eithe~ mptho~ an~

eve n bye0 mh ina t ion S 0 f the two. Fur t h~~ r Tn 0 r.- p, TT8 M() (1 0 n S
not require that the proper.- number of index expr0ssions hr
presentin its a r. qu rn e nt s • I t useson1y <1 sma nyin die (:l S (l:;

are appropriate for the arr~y qiven as its first ar.gum~nt;

it assumes the value zero for missing indices, ~nd 0valuat0s
but ctherwis~ ignores the expressions for extra indices.
Thus the number of etrgllments with which I:'r~M () rn~y he c~lled

can vary not only with th~ number of dimensions of the arr~y

being indexed but also with the choic0 of r0presentation for
each in~ex. The four-argument call

I TF. M(TIe 3 , X, "i , z)

has the sa me e f f ec t a s e i the r 0 f t h0 t hr (~e - a r CJ u mP. ntea 11 s

ITEM(TIC3,X I,' Y,Z)
or

ITEM(TIC1,X,Y ',' Z)

rA. Arrays

or the two-arqumt?nt call

11 0

Each returr.s t.he iten 'rIC3[X,Y,7.) as its vallIe. The
import.ance of this feature is illustraterl by an pXrllnplp at
the end of this chapter.

Ihe_r.EDIQ1Yl:~.1t._P~.9.~~1.!lr~~ :'he pporOTVPf () proc0c1ur~
can accept a~") its sIngle argument any ~xpt"~ssion whose value
is cf catatype r\:rray, and ret.urns (is its val.ue a Sr.cin9
giving the prctotype of that ar~ay. This prototype will be
the same as the one specified in ~b(:! crlll to t:h~ ARPAY ()
procedure ,~hich caused the array to be creatE~d, except th?t
the lower bound for each dimensicn is always explicitly
eXfressed, and the int~gers specifyinq the bounds are in
canonical form (a sign retained only for negative numbers,
leading zeroes suppressed, an~ zero represented by the
single character 0). Thus if the rules

BOARD = ARRAYCfOB,Oe')
"rIel = AR'PAY(15,S,'3'>
LIS T = rdn~ Ii Y (' 0: 9 9 9 ')
NBGARR = ARBAY('-50:+5')

have been executed, then execution of the rules

OUTPUT
OUTPUT
OUTPUT
OUTPUT

=
=
=

PROTOrrypF, (POARL)
PFOTOTYPE (TIC 1)
PRCTOTYPE(LTSTl
PROTOTYPE(NEGARR)

will cause the strings

1:8,1:8
1:5,1:5,1: 3
o:qgq
-50:r;

to te printed. Such strinqs may be investiqated with a
pattern-matching rule to determine the structure of the
array; this may be useful in cases where the dimensions hav0
not be~n given as literals ¥lit.hin the AR~AY() proceourp.'s
argument, but have heen specified by more complicated
expressions or supplied from thp data. For example, an array
could be created by executing the rule

BOXES AFRAY(DIM1 , ,, r TM2)

Although the value of BOXFS appears to be a two-dimensional

7A. ~rrays , 11

array, this is' not necessari.ly the cas~ since the values of
DIM' and DIM2, perhaps acquire~ from the input file, may
contain any nu~ber of commas. each inaicating anothpr
dimension. The nurr.her of dimensions of this (1rray may h0
(letermined by the followillq simple proqram seqment which
searches thp. string returned by PROTOTYPE () to deter. mine how
many commas it contains; the number of dimensions is always
one more than the numher of comm~s.

LOOP

DONE

STRING
STRING
cor~ MA
DIMENS

= PRO~OTYPE(BOX?S)

BREAK(','l ',' RE!1. STRING:
= COMMA. 1 : (LOOP)
= COMf1l~ + 1

F (DONE)

Th~ PROTOTYPE() procedure may also take a patt~rn or ~

Na~e or a structure of programmer-define~ datatypp as its
argUInE!llt. A description of the use of PROTOTYPE () with an
argument of one of these datatyp~s may be found in Appendix
A, section II.B.

lhg_:rr£BJ1_R£Q£~.9lJ.£~~The TYPEO proce(lure is ()nc~ ~!hich

will accept any expression as its singl(~ arq1lment. If thp
val ue cfit. 5 a r 9 11 mentis 0 f a pI' c (l e tin e ri d n t (\ t.Y l)"~ , t. h n

procf:<lur~ returns as its vf\lue a st.riny specify inq thi1 t
datatyp:~; if the value is of a proqrul!1mer-d(~finp~ ;1atiltyp\~,

the ~trinq DATA is returne~. For example, pxecution of th~

rule

OUTPUT = TYPE('SASSAFR~S')

will print STRING whi.le execut.ion of the rule

OUTPUT = TYPE (ARB)

(if ~RB still has its predefined value)
PATTERN; the rule

will prorl uce

OUT PUT = TYP E (L I ST) , n [] D11 ' TYP E (LIS T(1])

will print ARRAY followed by INTEGER~

TYPE () is often userl to test. whether or nat som(:')
variahle has a value of the expected datatype before somp
process is allowpo to conti.nllp'. Tt is particularly ur;pfnl
for t~stinq wll('"){"h0.[" Vr\lUPS p(1~)sn(i to th~ formdl vi\["i(lblC'~; of'
it procc flu[0 art' of t tip corr4 ' ct rl1ltat IP{"), (lnf} for: ill~ilil'illq

t It ~1 tall val u ('\ ~3 a ~) s :i q n0. d toO111 PU" arc 0 f d (l tat y p(~ C) t I: i n q 0 1:

datatvp~ Integer.

7A. Arrays 112

The short loop presented earlier to print the values of
all items belonging to a specified array may be amended with
the use of the TYPE{) procedure to first test the datatype
of each value and then to print only those of uatatyp~

Str.ing or Integer. ~his amended program segment us~s

indirect referencing within the go-to to transfer to a label
representinq the type of the value being processed. Tf th~

value is of data type ~tring or Integer then the value is
printe~: if it is of any other datatype, a message regar~ing

its -type is printed. Tn either case, the vallIe of the
selector is printed first so that the par-ticular item whos~

value is being printed or described may be identified. The
PROTOTYPE() procedure is used in the first statement to
insl1i:'e tha t a ene-dimensional ar.ray is being processed, and
to determine the lower bound of this array.

OUTPUT = N 'ccTHISoITEMoISaOFcTYPEo' TYPE~IST[N])

Leop TO PRINT ALL VALDES WHICH ARE STRINGS
IF LIST[N] EXISTS, GO TO THE STAT~MENT LABELLED BY THE

TYPE OF ITS VALUE

(INC)

(LOOP)

..

..

F (DONE) S ($TYPE (LIST[N}})

LI5T[N]

..

'00'N

TO GET NEXT ITEM
1

LI5T(N]

~EST WHETHER ARRAY IS 1-DIMENSIONAL AND FIND LOWER BOUND
PROTOTYPE(LIST) BREAK(':') .. N ':'

SPAN (,-0 12 34 56 7 8 9 ') RPO S (0) : P (ERR0R)
*
+

*
*
*
*
*LGOP

*STRING
INIRGER OnTPUT =
REAL
P~.1:'TERN

ARRJ\Y
NA ~E

CODE
DA1A

** INCREMENT INDEX
!NC N = N +

The labels provided in the program text (w1th the
exception of leop and INC) are exactly the strings returned
by thp. TYPF,() procedure. All have been mentioned except
CODE, which i5 described briefly in Appendix A, section
II.C. 1hese lacels provide an exhaustive list of the strinq
val U€s which TYPE () can return.

The program text may appear strange because of the
numter of null rules. Since the statements labelled STRING
an~ INTEGER both need the same rule, it has been written
cnly once in the second of these statemen-ts, the one
lacell€d INTEGER. If control is sent to the statement

7A. Arrays 113

latelleo ~TRING, it is sent on immp.diately to the statement
la~elled INT~GER where the rule which calls for printing is
execute~, since the statement labelled STRING has no rulp
and no go-to to be processed. Similarly, since thp
statements labellen REAL, P~TTEFN, ARR~Y, NA~E, CODE, and
rATA all need the same rule, it is written only once in thp
last of these statements, the one lab~lle~ DATA.

needeii in or (leI" for.
be detecte~. If this
statement consisted

1~e evaluation rule LIST[N)
failure of the item reference
evaluation rule were omittp.d and
solely of the go-to

is
to
the

.. ($TYPE (LI ST(N]))

then there woul~ be no way to terminate the loop gracefully,
and an execution-time error would result when the item
reference failed within the go-to bpcause the value of N
b€carne too large.

g!Q£~1~If_!Q_f~!nrn_~_S21~£!Q!~There are a nurnher of
processes concerning arrays which it would be convenient to
express as programMer-d~fin~d procedures since they ar~ so
frequently nep~ed. For example, one often wants to know thp
selector associated with the first null-valued item of an
a r r (\ y sot hat t his i t e m may he g i venan 0 the [' va 111 e. Th P

followinq SELFCT () procedure fails if there are no nnll­
valued iteIT',s, or succeeds and returns the selpctor of thn
first null item as its value. It works for any onp­
dimensional array, and uses PRO!OTYPE() as before to test
that the array is one-dimensional and to find its lower
bound. The single argument of SELECT() may be any expression
whose value is an array.

F(SEL.ER2)..

~(np.T"nN)N

'lEST WHETHER ~RRAY IS 1-DIMEN~ICNAL AND FIND LOWER BOUND
PROTOTYPE(ARR1) BREAK(':'). N ':'

SPA N (,- 0 1 2 3 4 5 F) 7 8 9 ') RPO S (0)

ELSE INCREMENT INDEX TO LOOK AT THE Nf;XT ITEM
N = N + 1

DEFINE ('SELFCT (ARR') N',' PRe SEL') : (END. SELECT)
* TEST WflF.THER FIRST ARGtJMFNT HAS AN ARRAY AS ITS VALUE
PR.SEL IDENT(TYPE(ARR'),'ARRAY') : F(SEL .. ER1)

*
*
+

** TEST WHP,THER THIS IT~~ HAS A NUlL VALUE
* RETURN ITS SELECTCR IF IT DOES
OU1.SPL SELECT = InENT(ARR1[N])

•
*
*

7A. Arrays 114

** PRI NT
S'E1.ER1
+

• 'J ES'I VHr. THE R TR ISSELF.CTOR ! sonTSID E THF. B0UNDS 0 F' ARR1\ Y
* IF SO, THIS ARRAY CONTAINS NO NOLL-VALUED ITEMS

ARR1[N] : F(FFETURN) S(OfJT.SEL)

ERROR MESSAGES AND STep
OUTPUT = 'ARGUMENTnOFaSELECTOcNOToANoARRAY'

: (END)
SEL.ER2 OUTPU! = 'ARRAYoPASSEDcIScNOTa1-DIMENSIONAL'
t : (END)
END. SElECT

When this procedure is used, as in the statements

Q = SELECT (LIST)
LIST[QJ :: WOED

or, equivalently,

LIST(SELECT (L1 ST)] '= WO ED

··

··

F (FULL)

F (FUI,L)

the procedure reference SELECT(LIST) causeS the value of the
variable LIST to be assigned as the value of the formal
variable ARB1 internal to the procedure call. If the value
of LIS! is an array, as is intended, this means that the two
variables L!ST and ARR1 have the same array as their values.
The first statereent of the procedure body tests the value of
ARB1 to insure that it is indeed of datatype' Array before
proceedinq; the second statement further tests that this
array is one-dimensional. If either test fails, an
appropriate error message is written and the procedure ends
execution of the program. If ARB1 has as value a one­
dimensional array, then the lower bound of this array is
assigned to the internal variable N. Then the evaluation
rule ARR1[Nl is executed; this refers to the same array item
as L!S![N) since ABR1 and LIST both have the same array as
value. This rule fails only when the value of N exceeds the
upper bound of the array, which occurs only when all items
of the array have already been considered. Hence if the rule
fails the array contains no null-valu~d items and an FR~TURN

is taken. If the rule ARR1[NJ does not fail then the value
of ARR1(N] is tested to see whether or not it is null; if it
is null then the result variable SELECT is assigned the
value of N so that this value is returned as the value of
the procedure call.

£IQ£gdu~_i.2-Inte!~h~llilg-1li.Q_--l!rays~ There are somp.
procedures which need to be passed the name of the variable
whose value is an array, rather than the array which is the
value of that variable. Consider two variables named X and
Y; the value of X is a one-dimensional array of 10 items,

1A. Arra ys 115

while the value of Y is a one-dimensional array of 100
items. The programmer wishes to cause the value of X to be
the 100-item array, an~ the value of Y to be th~ 10-itpm
array. Before perforrninq this swap he wants to he sure that
X and Yare hoth one-nimensicllal arrays. This process may hI-'>
performed with the side-eff~ct procedure SWAP() which has
three arguments: the names of the twc variables whose val~es
are arrays, and the number of dimensions these arrays are
both to have. Each name is presented as a string which will
he Fassed to the procedure hody to he used as the operand of
the indirect referencinq opp.rator to return a variabl~: the
number of rlimensions may be expressed as any numeric-valup.rl
expression. The SWAP() procedure uses the REPE~T(l

Frocedure, described at the heginning of Chapter 6, to huil~

a pattern which can be used to determine whether or not th~

prototype of each array has the specified numb~r of
dimensions.

DEFINE ('SWAP (A,B, N) rAT1, PAT2,TEMP' f' PRe SWAP ')
.. (ENO.SWAP)

** TEST HHETHER THE FIRST T~.zO A~GUMENTS ARE ARRP..Y-VI\J.. UED
PR.SWAP Il)J~NT(r[YPE($;~),'ARR,"Y') : P(~\~AP.EP1}

IDENT(TYPE($B) ,'ARRAY') 1;'(SWAP.ER2)

** 'rEST WHETHER BOTH APRr,yS ARE OF THE SPF.CIFIED DIf·lF.NSIOn
* BUILD A PATTERN USING REPEAT() TO LOOK FOR THE RIGHT
* NUMBER OP COLONS WITHIN THE PROTO'rYPE

PAT1 = BREAK(':') 1.1

PAT2 = POS(O) REPEAT(PAT1,N)
.. SPAN('-012345618Q') RPOS(O)

PROTOTYPE ($A) PAT2 : F(SWAP.ER3)
PROTOTYPE ($B) PAT2 : F(SWAP.EF4)

MESSAGES AND FAIL
= IfIRSTnARGfTMENToCFcSWAPO oNOTnANnARRAY'

(FR E'1'UR N)
':: 'SP.CONDn"R~fJMF;~TcOFnSWAP () "N01'nA NllAnR~.Y'

(vn Err" nN'
~ IfrR~TnARHAYnNOTnOPrJDTMr.NSl()Nn' N

(FHE'l'fJPN)

= • SECONDo1\RRAYnNO'fnOPnDIMENSIONo' H
(FRETIJRN)

** FRINT ERROR
SWAP.ER1 OUTPUT..
SWAP.ER? OUTPUT..
SWAP.ERlOnTPUT..
SWAP.ER4 OUTPUT..
FND.SWAP

SPECIFIED DIMF.NSION*
*
*

rOTH ARE ARRAYS OF THF.
SWAP THEM AND RETURN

TEt1P = $A
$A = $B
$B = TEMP .. (RETURN)

1A. Arrays 1'6

A callan this procedure to do the swappinq of the
values of X and Y as described above could have the form

SWAP('X', 'Y',1) .. P (ERROR)

Since the formal variables A and B never appear within
the procerlure body except precedert by a $ operator, it woul~

seem at first that the call ~WAP(X,Y,1) could be used
instead of the call SWAP('X','Y',1) and all the indir~ct

referencing operators removed from the procedure body, sinc~

the expression $'X' is indeed equivalent to X in all cases.
If this were done, however, the !~l.!!g of X would be used
wherever the formal variable A occurred in the proce~ure

body. While the expressions TYPE (A) and PROTO'l'YPE(A), where
A has as its value the same array that is the value of X,
will indeed work as desired, rules of the form A = Band
B = TEMP, will not produce the desired effect. Execution of
~he rule A = B would cause the formal variable A to be
assigned the array which is the value of Y, and the rule
B -= 'IEMP would cause t.he forlilal variable B to be assi.gneo
the -array which is the value of X. 'rhus the values of A and
B, ~hich are int~rnal to the procedur~ call only, would he
swapped rather than the values of the external variables X
and Y. In order to change the value of X, the string which
is its nall1e must be passed and a rule of the form $A = $ T3

must be used, since the expression $A, in this' case, will
return the external variable X to which an assignment can
then he made.

l.h.§!-l!i!.mg__Q£g!ft.!.QI~ Since array items do not have
strings as names, problems arise when one tries to pass the
name of an array item to a procedure. If the 100-item array
described above had been assigned to the created variable
L1S![') instead of to the natural variable Y, and its value
was to be swapped with that of the 10-item array which is
the value of X, then a call of the form

S W1\ P (, X' , 'L 15T[1]. , ')

would not produce the desired effect since the string
LI5T(1) is the name of a natural variable, and thus cannot
be the name of a created variable.

!he prohlem of passing the name of a createrl variable
is solved with the use of the name operator, a unary
operator whose symbol is a period. This operator takes any
variable as its operand and returns as its value a special
Object of data type Name which is a name for that variable.
Thus the name of the created varia.ble LIST(1] may be
ref-resented as .LIST['], so a procedure call of the form

1A. Arrays 1'7

SWl\PC'X',.LIST[1),1)

would produce the desired effect.

If the operand of the name operator is a natural
variable, which thus has a string name like X for example,
then the Name .X provides still a di~ferent name by which to
refer to that variable. ~he two names always rpf~r to th0
same variahle, and can be used interchanqeably. The
apflication of the $ operator to an operand of oatatype Name
gives the same effect as its applicai.:ion t.o a strinq-v~1t!0d

operand: the variable narnpd by thp np~ran~ is r~turne~. Thus
the call

SWAP (• X, • LIS T[1] , 1)

could be used as well. The only necessity for the use of th.,.
name operator arises when names of created variables must hp
passed to and from procedures. Note that objects of datatypp
NamE cannot be printed.

!s an example of an application in which a Name is to
be returned by a procedure, consider an amended vnrsion of
the SELECT() procedure, presented earlier in this chantpr,
which wouin return the Namp. of t.he first nnll-valuell item of
an array rathpr than its selector. This amended prOCl?dur.f~,

called STEPO, is presented helow; the entire procer1ure hody
is t l! e sam e as t hat 0 f SELEe T () e xG e p t for the f) tat P III (:> n t
labell€~ OU~.STEP in which the r~sult variahle is assigne~ a
value of datatypp. Name.

• FFOCF.DtJRE TO RETURN NAME OF FIRST NULL-VALUED ITEM

*
DEPINE ('STEP U\RR1) N', 'PRe STEP') .. (END.STF.P)

S (RETURN):

'rHTS ITFM HAS A NUlL VAI.tJE
NAME OF THIS TTF.M IF IT DOP~

TDENT(ARR1[N],NfJLLl .~.RR1[N]

ELSE INCREMENT INDEX TO LOOK AT NEXT ITF.M
N = N + 1

TEST WHETHER ARRAY IS 1-DIMENSICNAL AND FIND LOWER BOUND
PROTO'IYPE(ARR1) BREAK(':'). N t.1

SPA N (• - 0' 23456789') RPO S (0) : F (ST EP. F. R2)

** 'IEST WHETHER FIRST ARGUMENT HAS AN ARRAY AS ITS VALUF
PR. STEP IDE NT {TYPF; (ARR1) , • ARRAY •) : 1" (STEP• ER1)

*
*
+

** 1EST WHETHER
• RFTORN THE
OUT. STEP STFP =
*
*

*

111.. Arrays '18

• 1EST WHETHER THIS SELECTOR IS OUTSIDE THE BOUNDS OF ARRAY
• IF SO, THIS ARRAY CONT~INS NO NULT.-VALUED ITEM5

ARR1(N) : F (FRETURN) S (OUT. STEP)
•* PRINT
STEP.ER1
STEP.ER2
END.STEP

ERTIOR ME~S~GES AND STOP
OUTPUT = 'ARGUMENTnOFaFr'ND 0 oNOTaANcARRAY' : (END)
OUTPUT = 'ARRA-(cPASSEDoISoNOTo1-DIMENSIONAL': (END)

The rule

$STEP (LIST) = WORD .. F (FULL)

may he used to assign the value of WOFD to the first nu1l­
valued item of the array which is the value of LIST.
Execution will cease if the value of LIST is not a one­
dimensional array (in which case an error message is
printed). The procedure call will fail if there are no null-,
valued items remaining within the array. If the procedure
call succeeds it returns the Name of the first null-valued
item; this Name is used as the operand of the $ operator
which returns the needed variable.

Alternatively, an NRETURN could be used to cause the
procedure to return a variable rather than an object of
datatype Name, but the name operatcr would still be needed
within the procedure body. If the statement labelled
CU~.STF-P were written as

OUT.STEP STEP = IDENT'(ARR1[N],NULL) .ARR1[N] : S(NPRTURN)

then the procedure call would have t.he form

STEP (LIST) = WORD : F (FULL)

since the value returned by STEP() is the variable needen
for assignment.

~Q£ming_~!1_2~1~ctQ~_Qf_~~!I~1~Whenever the' STEPC}
procedure is called, it always starts by investigating th~

"first" item of a one-dimensional array, that is, the one
whose selector is formed by using the lower bound of th~

array as its single indEX. ~he procedure continues to form
new selectors by adding one to the value of this index until
a null value is found, or until an attempt is made to
increase the index beyond the upper bound of the array; if
this happens, then every selector of the array has been
used. Since the STEPO procedure has been written to process
one-dimensional arrays only, the method it uses for
determining all selectors of an array is very simple. The

7A. Arrays

process of determining all selectors becomes
comflicated when an array is multi-dimension~l.

morp

A general purpose ruethod which would work for an array
of any number of dimensions cQuln be descr.ibed as follows.
start uith a selector formed by using the lower houn~ of
each dimAnsion as its index; this information may hp
obtained from the prototype of the ~rray. (For example, thp
initial selector of an array whose prototypP is
0:2,1:10,1:10 is 0,1,1.) Subsequent selee'toors arp. fOrll1ed hy
adning one to the index of the last (rightmost) dimpnsion
until the upper bound for that dimension is reached (just as
for a one-~imensional array), while keepinq all other
indices constant. When the upper hound of the last in~ex is
reached, r~set that index to its lower hound an~ i.ncrement
the index of the penultimate dimension by on~c vor this
value of the npxt-to-the-Iast index, run throuqh all valups
of the la~t index again, r@setting when the npper bounJ is
reached. Repeat this process for all values of thp
penultimate dimension, then rGset the this in~ex to its
lower bou~d and tegin incrementing the in~er of thp
antipenultimatt~ dimensi.on, r.epeat.ing \~he pr-PViO'.lS}Y

describerl processes ((;(' each of i.ts valups, pte. PrOCl:!(~('

until the index of the first dimension has reach0d its tlppp[,

bound; then, all selectors of the ar.ray have been formprl.

If the process just described is applie~ to a threp­
dimensional array whos~ prototype is 1:3,1:2,1:2, th0
following selectors will be formed in the indicate1
"nulferic" order.

(1.)
(2.)
(3.)
(4.)

1 , , , 1
1, 1, 2
, ,2 , 1
1.. 2, 2

(5.)
(6.)
(1.)
(A.)

2, 1 , 1
2, 1, 2
2,2, 1
2,2, 2

(9.)
(10.)
(1 1 •)
(12. l

3, 1, 1
1, ~, 2
3, 2, 1
.1,2,2

It is easily seen from this display that the rightmost
index does in<'1eed vary most often, while the leftmost. index
is never reset but goes through its range of values only
once. 'Ihe process could be describerl just as easi.ly with the
leftmost inaex varying most oft.~n, but the order in \<thich
the particular selectors are formEd is immaterial sincp th0
same process may he tlse<'1 whenf'ver all it.@ms of an array arp
to be considered. 'rhus if a] 1 items are a~~.iCJn0f1 valll~~:;; l,y
the methocl iust r1~scrit)(~cl and li\t.er t.he Silrn0. metho(i if) llsell

t.O Pr in t t h-:' val ues, the nth 0. va 1ucs ~r iII b0 pr in t. (~·1 in
whatever order t.h~y were assigned. Since therp ar~ many
a p p 1 i c at ionsin w11 i c hall i t P. mS 0 f dna r ray mus t h('
considered, it is convenient. to express this process in
terms of a procedure.

7A. Arrays 120

Proc ~d U Let 0 Ret. urn t.he" ~r ext " Se 1 e c t 0 L • Presented
below--rs--a--programm€r:defined--frocedur~;--NF,XT0, which
requires two strings as arguments: the first represents a
current selector and the second the prototype of the array
whose "next" selector is to be formed: this selector ;_s
returned in t.he form of a string as the value of the N~XT ()
procedure. Here "next" is used to mean the selector which
follows in the order described in the precedinq section. The
NEY.~(l procedure fails when there i~ no next selector, for
exarofle, when the current selector passed as its argument is
the last in the order described above.

* FFOCEDURE TO RETURN THE "NEXT" SELECTOR

* DEFINE(tNBXT(SEL,PROTO)INDEX,LB,UB','PR.NEXT')

** PATTERN POR TE~RING SELF,CTOB APART INTO ITS INDICES
* ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE SEL.PAT

SEL.PAT = (',' I NULL) SPAN('-012345fi7A9 t) • INDEX
+ RFOS (0)

* PAT!E~N FOR TEARING PROTOTYPE AP~RT TO FIND LOWER AND
* UPPER BOUNDS
* ASSIGN THIS PATTERN TO THE MAIN-PROGR~M VARI~BLE pnOT.PhT

PROT.PAT = (',t I NULL) SP1\N('-0121U56789') • LB
+ ':' SPAN('-0123456789') • UB RPOS(O) : (END.NEXT)

** FIND RIGHTMCST INDEX OF THE SELECTOR STRING AND RF.~OVE

* FAIL IF NO MORE INDICES TO BE FOUND
PR.NEXT SEL SEL.PAT = NULL : P(FRETURN)

** FIND LOWER f, UPPER BCUNDS FCR THIS DIMENSION
PROTO PROT.P~T = NULL

** INCFEMENT INDEX IF IT IS LESS THAN THE UPPER BOUND
INDEX = LT (INDEX, UB) INDEX + 1 : F (RESET. NEXT)

* FORM NEXT SELECTOR STRING BY CONCATENATION
NEXT = IDENT(SEL,NULL) INDEX I,' NEXT: S(RET.NEXT)
NEXT - SEt I,' INDEX I,' NEXT

(PR. NEXT)..

** REMOVE SPURIOUS FINAL COMMA FROM SELECTOR STRING
RE'!. NEXT NEXT ' " RPOS (0) = NULL : (RETURN)

** FESET THIS INDEX '0. ITS LOWER BCnND, CONCATENATE IT TO
* THE SELECTOR STRING BEING FOR~ED AND PROCEED TO WORK
* ON THE NEXT INDEX
RESET. NEXT

NEXT = LB I,' NEXT
END.NEXT

7A. Arrays 121

Note that the NEX~() prcce~ure returns a strin~ as its
value. Thus t.he selector repres~nted by that string cannot.
he useo within an item reference, where only a selector list
is appropriate, but may be use~ as the second argument of
the I1'EM 0 procedure, as in the rule

OUTPUT = ITEM(lIST,NEXT(SELECT,PROTOTYPF.{LIST))

where thp value of SELECT is a strinq representinq th~ last­
used selector. If the ITF-M{) procedure were not ~efin~d to
accept a string as its second argument, it would not he
possible to write a useful, gAneral purpose NEX1'O procedure
to work on an array with any number of dimensions.

NEXT() was devis€c1 for the purpose of returning all
successive selectors of an array, each call to NEXT<)
returning the next selector until a failure transfer is
executed. The loop shown below uses the Nr~X1'() pt:'ocer1urc in
this way. The INIT(} procedure which precedes thp loop
pro v i rl e S (l ~J t r i ng tore use d a 5 the i nit i a 1. v(} I u~ 0 f S ELr. C7 ;
I NT'f () t. a ke 5 apr0 tot y peasitS d r gum entan c1 r p t urn ~; t h p

"fir-:::;ttt selector. of an array described by that prototYf'e.

DEFINE('INIT(PROTO)lBPAT,LA','PR.IVIT')

BY CONCATENATION
: (PR. I HI T)

.~ND RETURN
: (RETU PN)

FIND NEXT LOWER BOUND
= NULL : F(RET.INIT)

ALL SELECTORS OF lIST
= INT1(PROTOTYPE(LIST»
= ITE~(LIST,SEtEC~)

= NEXT(S~LRCT,PRCTaTYPE(LIST»)

: S (LOOP)

SET OP PATTERN TO FIND LOWER BOUND FOR E~CH DIM~N~ION

ASSIGN THIS PATTERN TO THE MAIN-PROGRAM VARIABLE LB.P~!

LBPA~ -= BREAK(':') • IB I:' (BREAK(',') ',' I PEM)
: (END. I NIT)

tOop TO PRINT
SP.I.ECT
OUTPUT
SELECT

FORM INITIAL S~LECTOF STRING
INIT = INIT ',' LB

* REMOVE 5PURICUS INITIAL COMMA
RE!.INIT INIT I,' = NULL
END.INIT
:tr

*

*
*
*

+

LOOP

+

** USE THIS PATTERN TC
PR.INIT PROTO LA. PAT

*•

Since NEXT () is meant to be used in this an~ similar.
ways, it has no special provision for dealing with sclvctor
strings passe~ as the first argument which fall outsirle tho
range of thp array; such provisicns coulrl bp a~derl to makp
the procedure more qenp.rally useful.

1A. Arrays 122

PrQf:~Q.!t!:~_l!LE.~!.YI.n_LCoEj!_.Qf_~1U_T\rr~y.!. It is often
necessary to make a copy of an array, rather than merPoly
assiqning the same array as the value of more than one
variahle, so that changes in the values of the copy can he
made without affecting the original. To make a copy of an
array means to create a new array with the same prototype as
that of the original, and to assiqn to each of its items thp.
same value as that of the correspon~ing item in the oriqinal
array. The following CCPY () procerlure returns as its value a
copy of any array; it requires only one argument, which may
be any expr€ssion whose value is the array to be copie~

this array may have any number of dimensions. The COPY()
procedure invokes the INIT() procedure to form the initial
selector string, and the NEXT() procedure to insure that all
items are consider~d and hence copied; both of these
procedures are described in the preceding section. A call to
the COpy 0 procedure fails, causing an error me~sage to be
printf?d, .only if its argument is not of datatype Array.

* PFOCEDURE TO PETURN A COpy OF A~Y ARRAY

* DE'FINE ('COPY(ABR1) SELECT, P', 'PR.COPY') : (END.COPY)

CPEATE A NE~ ARRAY WITH PROTO~YPE OF ARGUMENT
AND ASSIGN IT AS TAE VALUE OF THE RESULT VARIABLE

P = PROTOTYPE(ARR1)
COpy :: ARRAY (P)

** TEST
PR .. COPY

*
*
*

WHF.THER ARGUMENT IS AN ARRAY
I DPNT (T YI! E (AFR 1) , , ARP. AY , l ..' F(COPY.ER1)

: S (COpy. COP Y)
F (RETURN)

= 'ARGUMENToOFoCOPYcNOTcANcARRAY'
: (FRE'l'URN)

CALL NEXT(} TO RETURN THE NEXT SELECTOR OP THIS APRAY
IF NO NEX1 SELECTCR, R~TURN

SELECT = NEX~(SELECT,P)

+
COPY.ER1 OUTPUT
+
END.COPY

** CALL INIT() TO RETURN THE FIRST SELECTOR OF THIS ARR~Y

SELECT = INIT(P)

** COpy V~LnE OF NEXT ITEM OF ARRAY, USING ITEM()
COpy.COPY
+ ITEM(COPY,SELECT): ITEM(ARR1,SELECT)

*
*
*

Appendi x· A. SUMMARY OF PREDEFINED PROCEDUPE~

123

I. PRCGRAM PROCRDnRES are used by the programmer as basic
operations in constructing programs.

1. General Comparison

IDEN1' ()
DIFFER ()

2. String Comparison

LG'r ()

3. Arithmetic Comparison

EO 0
NF. ()
G'i' ()
GE 0
J,'r ()
LE 0

1. Pattern Ccnstruction

ANY ()
NCTANY ()
SPAN ()
BHEAK ()
LFN 0
'i' ABO
RTAB()
pes ()
nPOS ()
ARBNO()

2. string Operation

TRIM()

A. Summary of Predefined Pr.ocedures

1. structure Creation

ARRAY\)

2. Field selection

P~RAM ()
FIRST ()
RESTO
tEFT(l
RIGHT ()
f' A~ILY 0
SELECTOR ()

124

II. SYSTEM PROCEDURES ar~ used to communicate instructions
and requests to the Snotol system.

1. Programmer-defined Prccedures

DEFINE ()

2. programmer-defined Datatypes

DATA 0

1. Attributes of Objects

SIZE ()
DA'IATYPE ()
'rYPE()
PROTOTYPE ()

2. Execution Information

ALPHA BBT (J
DA'IE 0
CLOCKO
'1'IME{)
STCOUNT ()
S'ILIMIT ()

A. Summary of Predefined Procedures

MAXLNGTH ()
FNCLEVEL ()
NF.XTVARO

1. Special Execution

ITEM ()
APPLYO
IF ()

2. Set Mode of Pattern-Matching

ANCHOR ()

3. Datatype Conversion

CCNVEFTO
conE ()

1. File Association

INPurr ()
OUTPUT ()
DEtIACH ()

2. Requests for File Actions

ENDGROUP 0
REWIND ()
REMhRK ()
FREEZE ()

3. ~ests of File position

EORLEVEL ()
Eor 0

12S

A. Summary of Predefined Procedur~s 126

The foregoing classification scheme is intro~uced as an
aid to understanding the purpose an~ use of th~ various
predefined procedures; the particular classes differentiated
play no part in the definition of Snobol, and other
classifications coula be devised. Notice th~t most
proqrammer-defined ~rocedures declaren hy DEFINE()
constitute extensions of the classes of test procedures an~

result procedures, and that those dp.clared hy DAT~()

conEtitute extensions of the classes of structure creation
and field selection procedures.

In th~ descriptions which follow, each predefine~

procedure is shewn along with the kind of value required for
its argument (s) an (1 the kind of v~lue it rp.turns .. There ilre
no sy~tactic rp.strictions on the form of arguments; since
all arguments are passed "by value n in Snobol procedur~

calls, actual arguments may be written as arbitrarily­
ccm~licated expressions. There are, however, semantic
restrictions on the values resulting from evaluation of
actual arguments, defined in terms of ndatatypes. H Every
data object known to a Snobol p~oqram is of datatype strinq,
Integer, Pattern, R~al, Array, Name, Co~e, or a programmer­
defined dat.atype. Each procerlure is shown here wit'" the
datatypes it will accept; a call of a procedure usinq an
argument with a wrong datatyp~ will result in an execution­
time error. ~ome procedures are described as accepting th~

non-datatyp~ "structure"; these procedures will accept an
argument of any programmer-defined datatype. Some procedures
arc described as accepting thp non-ddtat.ype "any": these
procedures impose no restrictions cn their arguments. Som~

procedures are described with an empty argument list; these
procedures are defined to have no arguments.

There are two generalizations not specifically
mentioned in the descriptions: (1) a procedure which accepts
a Pattern will accept a string or an Inteqer: (2) a
procedure which accepts a string will accept an Integer.

Any predefined procedure may te called with more or
fewer arguments than are shewn in its definition. Missinq
arguments are assumed to be thp. null value; extra arquments
are evaluated but otherwise ignored. The evaluation of extra
arguments may have important consequences,- however; if the
evaluation involves the invocation of procedures which
Froduce side effects, for example, it will cause those side­
effects to occur before the outer ~rocedure call occurs, and
failure during any part of the evaluation of the arguments
will rp.sult in failure of the rule before the proce1ure call
occurs. The extra arquments are ignored only in the sense
that they are not passed to the procedure being called.

A. Summary of Predefin~rl Procedure~

I. PROGRAM PROCEDURES

127

IDEN'I (any,any)

DIFFER(any,any)

Returns: null value, or fails

Returns: null value, or fails

IDENT() and DIFFER() d~e used to ccmpare two ~rquments

of any datatype to see if they are indistingllishahle to th0
Snot01 s Ys t p m -- e quivale n t. Fat t ern s t ruc t t1 re s , t hPo 5a m8
array, equal integers, identical character strings, or
whatever. IDENT() succeeds if its arguments arA identical;
DIFFERO su~ceeds if its arguments are not idpntical.

IDENT(PRU.PAT,TEST.r~T) DIFFER (WO RD, NUL L)

LGT(string,string) Returns: null value, or fails

LGT 0 - a mn~motlic for Lexiccqraphically Greater :'h{}fl
compares two strings to see if they are "alphdhn··:.i~ally"

ordererl, using as an al phabet the computer's character spt.
tn its s~andar<l collatinq sequenc(~. plotiee that t.hC'
arguments must be given in the reverse of th~ ~esire~ or~0r:

the test is ~hether the first argument £Q!lQ~§ the sccon1
argument.)

LGT(WORD,'lEMUEl') LGT (WOnn,TES'r)

RQ(Integer,Int~ger) Returns: null value, or fails
EQ(Real,Real) Returns: null value, or fails

NE(Integer,Inteqer) Returns: null valup., or fa il ~

NE (Rea 1, Real) Returns: null value', or fails

G1(Integer,Integer) Returns: n ull value, or fails
GT (Real, Real) Returns: null value, or fa ils

GE(Inteqer,Inteq~r) Returns: null valu~, or fa ils
GE (Real, Real) R~turns: n ul1 value, or fails

L1(Inteqer,Integer) Returns: null value, or f (1 il s
LT (Real, R?al) Returns: null va lue, or fa ils

tE(Inteqer,Tnteqer) Re turns: null v.,lue, or fa ils
LE(R€Cil,neal) Returns: n u1l val Up., or fa il s

A. 5ummary of Predefined Proce~ures 12A

These arithmetic test procedures are used to compare
the first argument to the second argument to see if thp
relationship symbolized by the procedure na"'e is t.r 11e. 1'hp
t~o arquments must be of the samG datatype.

EQ (ACNT,BCNT)
X ::: L E (X • 8)

; LT (LINE, 5)
X + 1 .. P (OUT)

ANY (String) Returns: Patt~rn

ANY() returns a pattern which will match any single
character from its argument string.

ANY('AElOU')

NO'1' ~ NY (S t r i n g)

., ANY (VOWELS)

Returns: Pattern

NOTANY{) returns a pattern which will match any singl~

c h a r act e r !lQ.t a Pp~ a r i ngin its a r gum ~~ n t s t r in9 •

NOTANY('AElOU')

SPA N (String)

NOT ANY (VO~lELS)

Returns: Pattern

SPAN() returns a pattern which will match the longest
continuous string of one or more characters appparing in its
argument stri.ng.

SPA N (' AEICU') ·• SPAN(VOWELS) ·• SPAN('MISSISSIPPT')

BRE~K(string) Returns: Patt.ern

BREAK() returns a pattern which will match the longest
continuous string of none or more characters not appearing
in its argufuent string; that is, everything up to but not
including any character in its argument.

BREAK (' l\EIOU') ·, BREAK (VOWELS) ·t BREAK('MISSISSIPPI')

A. Summary of Predefined Procedures

LEN (Integer) Returns: Pattern

LFNO returns a pattern which will match any string of
characters of the length giv~n by its argument.

LEN(IJ) ·• LEN('22') LEN(SIZE(VOWELS»

TAB (Integf.\r) Returns: Pattern

~AB{) returns a pattern which will match all thp
characters up to the string pcsition specified by it~

argument. (The convention for string numberinq is that
string position 0 precedes the first character, strinq
position 1 is after the first cha~acter, and string position
n is after the n-th character.)

TAB (5) ·, T~B('22') 'I~ 8 (COUNT)

RTAE (Integer) Retul:ns: Pattern

RTAB() returns a pattp.rn ",hi~h will mat.ch all t.h~

characters up to the string position specified hy its
argument. Its action is identical to 'rABO, matchin'l strin\l[;
cf characters from left to riqht; the only oiffer(~nc(\

between them is t.he numbering convent.ion used hy t.h0
argument. (RTAR 0 •s numberinq convpntion is t h~i t strinn
position 0 is aft~r the last charact<~r, strino position 1 is
before the last character, and string position n is befo~e

the n-th character from the end of the string.)

R'IAB(5) RTAB ('22') RTAB(O)

POS(Integer) Returns: Pattern

POS() returns a pattern which will match only thp
strinq position specified by its argument; it matches no
characters at all. (String positions follow the numherinq
convention of !AB().,

pes (0) ·• POS (5) POS('22')

A. ~ummar.y of Pre~efined Procedures 130

RPOS (Integer) Rp.turns: Pattern

RPOS(} returns a pattern ~hich will match only the
string position specifie~ by its arqument; it matches no
characters at al1~ (string positions fo110'J the nucbcrinq
convention of FTAR().)

RPOS (5) RPO S (. 22') ., RPOS (COUNT)

ARBNO (patterI) Return~: Patteru

ARBNO() returns a pattern which will match zero or more
occurrences of the pattern which is its argument.

AIH1NO (BREAK ('c.,; I) LEN (1)} ARBNO(ANY('AEIOU'»)

TR 1M (Str ing) Returns: strinq

TRIM() returns a string which is the same as its
arguwent, but shorn of trailing blanks.

TRI M(WORD)

ARBAY (String)

TRIM (INPUT)

Returns: Array

TRIM (UNCL'E.TOBY)

APRAY () accept.s as its single argnment a prototype
string specifying the numher of 1imensions wanted and the
upper and low~r bounds for the index of each dimension.
ARRAY('10,15') specifies a two-dimensional array with
indices from one to tan and one to fiftep.n.
~RRAY('O:60,-5:+5') specifies a two-aimension~1 array with
indices from zero to sixty an~ from minus five to plus five
(i. e. , a six t y-0neb y e 1evenit emar I:'a y). A11 a r.r 'a y i t ems
are initialized to the null value. There is no limit on th~

number of dimensions which may be specified for an array.

Since ARRAYO returns an object of datatype Array as
its value, it is used by writinq something like

LIST = ARFAY('O:60')

which has the effect of creating a family of sixty-one

A. Summary of Predefined Procedures 131

variables, which may then he referr~~ to by the item
refere nc e s I. I ST[0] , LIS T[,],. • • , tIST[60].

PARAM (Pattern) Returns: Pattern, string, or Integer

PARAM(} accepts as its argument only a patter.n r.eturneo
by one of the ten predefined pattern procedures; it returns
the argumpnt. (Far(\meter) with which one of those was call01~

to construct the pattern. If the ~attern is one constructe~

by LEN (), POS (), RPOS (), TAB (), or RTAB (), then PARAM ()
returns an Lnt~ger; if the pattern was const.ructed by ANY 0 ,
NOTANY (), SPAN 0, or BREAK 0, then FARAM 0 returns a st.ring
of charactprs in their standard collating sequpncc (th n

sequence defin€c1 by AT.PHABET () ,. If the patb~rn Has
con~tructed by ARBNOO, then PARA~ () returns thp patt.ern
that was its argument, which may of course be of datatypp
string or Integer in simple cases.

FI~~'I (Pa ttern) Returns: Pattern

PTaST() accepts a~ a~ argument a pattern constructe~ hy
an altflrnation or. concaten~tion opecator. It. returns th0
first element of the pattern. ~hU5 if

PAT = X Y Z

has teen executed, then

FIRST (PAT)

r~turns the pattern which is the value of thA expression
X Y, a concatenation. On the other hand, if

PAT = X (Y I Z)

has been ex@cuted, then

FTRST (Pl\T)

returns the pattern which is the value of X.

RES'I(Pattern) Returns: Pattern

REST () i~ thn. complement to PInST () :
altcrnate~ or. concatenate~ patt~rns as
returns all but the fir~t element. ThUS, if

it also accpnt~;

a r q u men t s , a n rl

A. Sum~ary of Predefineo Procedurp.~

PAT = X y Z

has been executed, then

RES'I (i? AT)

returns the pattprn whi.ch is the 'lal'Je of z. If, ho~ever,

PAT :: X (Y I Z)

has been executed, then

REST (PAT)

132

returns the pattern which is the value of Y
alternation.

z, an

LEF'I (Pat tern) Returns: ~attern

LEFT() accepts as an argument a Pattern constructed hy
an immediate assignment or conditional assignment operator;
it returns the pattern which is the left-hand op~rand of
that operator. Thus if

PAT = ANY (VOWELS) • V

has been executed, then

LEFT (PAT)

returns the pattern which is the value of the expression
ANY (VOWELS) •

RIGH'! (Pattern)
RIGET (Namel

Returns: Name
Returns: Strinq

RIGH~() may have a pattern constructed by an assignment
operatcr, in which case it is the complement to LEPT(). For
instance, if

PAT = ANY (VOWELS) $ V

has been executed, then

RIGHT (PAT)

returns the value of the expression
variable v.

. ". ~ , the Name of the

A. Summary of Predefined Proceoures 133

RIGHT() may also have as argumpnt a defprred evaluation
pattern, in which case it returns the Name of the opprand of
the deferred evaluation operator. If

PAT = *v

has been executed, then

RIGHT (PAT)

returns the value df the expression .V, the Name of the
variableV.

Finally, RIGHT () may have as its argument the Name
(datatype Name) of a natural variable, ,in which case it
returns the String which is the other name of that var.iabl0..
(RIGHT () will not accept the Name cf a crea ted var ia bl("~, nor
the String name of a natural variatle.) Thus, thp value of
RTGHT(.V} is the String V; the statements

PAT =
OUTPUT

fa. NY (VOWELS) $ V
= RIGHT(RTGHT(PAT»

will print the character v. Since ohiects of datatype N~m~

cannot be printerl, it is the RIGHTO procedure which
converts Names of natural variables into a form suitab10 for
assignment to OU1'PU'T. (To print Names of erea ted va riablc\~;,

see FAMILYO and SELECTCRO below.)

FA lilLY (Name) Returns: Array or structure

FAMILY() accepts as argumeht the Name of a crpatp~

variable (array item, or field of a programmer-~efined ~~t~

s t r. uc t. ur e). I t ret urns the 0 b i ec t. wh i chis the f (\ Tn i 1Y 0 f
variables to which the Named variable belongs. If LIST has
been assigned an array as value as in

LI~T -= A'RRAY('v:10')

and the rule

F. L EMF NT = • I, 1ST[5 J

has been executed (notice that the value of ELEMPNT is of
dutatype Name), then

FA 1'1 I L Y (EL EMF N'I)

returns thp Array which is the value of LIST. Simil~rly,

~. Summary of Predefined Procedures

after the statements

n~T~('NODE(LLINK,~LINK,INFO)')

NEXT = NODE(,,'~)

ELEMENT = • INFO (~!FX':'

have been expcuteo, then

FAMILY (~LEM~NT)

1J4

returns th~ object of datatype Node which is the value of
NEX'!.

Since PAMILY() returns the Array or structure rathQ.r
than the Name of the variable whose value is the Array or
s t r uc t ur. e, the val ue 0 f FA~l Tty () issu i ta b 1e for U 5e il s t hP,

first argument of ITE~(), or a second argument of APPLY().

SELECTCR (Name) R~turns: String

SEIECTOP{) is the oth~r half of F~~ILY(l. It also
accepts as its arqu~eh~ the Name cf a credted variable, and
returns a String which may be use~ to select that variable
in its family. For Arrays, SELECTOR 0 r~turns a stri~,q which
is a list of in~ices; for structur~s, ~ELECTOR() returns a
string naming a field selection pro=e~ure~ The Strinq
returned by SEIECTOR() is appropriate for use as the first
ar.gument of APPLY(), or a second argument of ITEM(). (Note
that this last use takes advantage of the fact that I~E~()

will accept such a string of indices; only in the case of
one-dimensional Arrays may the value of a call to SBLECTOR()
be used within square brackets in an item reference.)

A. Summary of Pre~efined Proc~dures

II. SYSTEM PROCEDORES

135

DEFINE(string,String) Returns: null value

The first argument of DFFI~E() is a strinq consisting
of the name of the procedure being defined, followeo hy ~

pair of parentheses containing the name~ of the for~al

variables (if any), which in turn are followor1 (w ithout C\

comma) by the names of internal variables (if any). Th~

seccnr1 argument is a string naming the "entry labpl" for thp
proc~dure: if the second argument is null, the entry labpl
is assumed to have the same form as the name of thp
proce1ure bping defined.

DE FIN E (' PRI NT (N, NAM E) M~ W, F')
DEFINE (' RECORDS () " 'PR. RECO~!D5')

[AIrA (st,=,ing) Returns: n u11 va IlH~

The D~TA() declaration has as it.s argument a prototypn
striug consisting of the name of thp datatype being d0fln0d,
follow€d by a parent h~s ize~ 1ist of the na me s of t h0 fie ,_~ ~~

which an object of that. natat.ype i.~ to comprise (if Clny).
The e f f e ct 0 f the DA'!' A() d0. C 1C\ rat. i c n i s t 0 ~ e fin P. { \l it h 0 t1 t
(l n y nEfIN EO' s) a s t rue t u r f? c rea t ion pro("; l~ (1 nref 0 r t. h ~

datatype, along with a field selectiC'n procedure for each
field. Thus, after the declar~tion

DA'!'A ('NODE (LLINK,RLINK,INFO) ')

has heen executed, Node's may te created with statements of
the ferm

NEXT = NODE () ; CTlRRF:NT = NODE (NEXT I' TRT M(! ~PUT))

Fields of the created structure have values initializp~

accordinq to the values of the corr0spon,iinq ~rC'Jumpnts of
the proceoure call: null argtJm~nt.s produce null fiE'lds.

t~c variables which are fields of structures are
referr€d to by fiel~ refprences, consisting of a refcrenc~

t 0 a fie 1d s e 1e c t ion proc e r} II r e wit t, an ur CJ U men t 0 f t II P

profer datat.ype to specify thp. family; for fh(~ pXilmp10

dbcve, by statements of the form

A. Summary of Predefined Procedures

LEFT ~ LLINK (CnR~ENT)

NAME = INFO(NEXT)
RLINK (CURRENT) = NEXT

136

The same field name may be usei! in clefinitiohs of more than
one ~atatype, since its interpretation is qoverned by the
datatype of the argument in any field referenr.e. Notice,
however, that the names of structure creation procedures and
field selection procedures ~re drawn from the same set ~5

all ether procedure names, so that (for instance) ~efining a
structure

DATA ('ENTRY (TYPE,SIZE:rINFO) ')

will re-define the preiiefined proceclures TYPE () and SIZE ()
as 'field selection procedures for objects of datatype Entry.

11.8

SIZE (Str-ing) Returns: Integer

SIZE() returns the integer length (the number of
characters) of thp. st.ring which is its argument.

SIZ E (VOWEL S)

D~~TATYPE (any)

.
t SIZE(TRIM(INPUT»

Returns: string

DATATYPE () returns the string of characters which is
the name of the datatype of its argument (predefined or
programmer-defined). It is used for controlling branching,
and can he used wit.h IDENT() to simulate other test
procedures. To test whether COUN' is an integer, write
IDEN'I (DA'l'ATYPE (COUNT) " INTEGER') •

DATATYPE{COUNT)

TYPE(any)

.
• : ($('L' DATATYPE{VAL»)

Returns: string

'rYPE () returns the same result as DATATYPEO for
object.s of predefine~ datatypes, and the string DATA for
objects of programmer-defined datatypes. Thus, an exhaustive
li~ting of the strings returned by TYPE() is:

S'IRING
ARRAY

INTEGEF
NAME

BEAL
CODE

PA'i"TERH
DAT 1\

A. Summary of Predefined Procedures 131

PROTCTYPE (Arra y)
PR01CTYPE(structurel
PROTCTYPE(Pattern)
PRO'IOTYPE(Name)

Returns: String
Returns: String
Ret.urns: string
Returns: string

PROTOTYPE () returns as its ,'alue a Strinq represpntinCf
the systE'm definition of t.he Obj0Ct which is the value of
its argument. Its operation is rath~r ~iffer.ent accorrlinq to
the datatype of its argument. In each case, the strinq
returne~ is intenrt~o to be convenient for investigation by
Snotol pattern-~atchinq.

When the argument of PROTOTYPE() is an ohiect creat~~

by a call to the predefineo structure creation proceclnI"0
nRR~Y(), the string returned is the list of upper and lowpr
hounds of indices for the dimensions -'- esspntially the satr.0.
as the argument given to the ARRAY (; procedure, except that
lower boun~s are always explicitly nresent, and each integnr
is in canonical form (no signs fer posit.ive numhers, no
lea~inq zeroes). Thus, if the rule

LIST -- ARRAY (' 0 0 : 5 " -, : + 3, 0 5 ')

has teen execut€d, then

PROTOTYPE (LIST)

will return the 12-character string 0:5,-1:3,1:5.

When t. heargumen t 0 f PRO TOT YPE() is a n 0 h i ec t 0 f (l

programmer-defined datatype one creatpd by a call to ~

programmer-defined structure creation procedure --- t.hen th0
string returne~ is that defining the datatype of the oh;ect.
This is the same as the string which was the arquffiPnt of thn
call to thp OA'TA() procedure which dpclared the natatYP8 -­
not the argument list of thp. st.rnctur.e creation procp.ourp
which created the ohlect (unlike the case for Arrays). Thus,
if the two statp.ments

DATA('~ODE(LLINK,RLINK,INFO)')
CURRENT = NODE(LAST,,'SCNNETc1S')

have heen executed, the value ef CUF~ENT is an obi~ct of
datatypp None, with its LLINR() and INFnO fieln~

initializeri as shown and it.s RLINK () field nnll. Thpn the'
rule

PROTOTYPE(CURRENT)

would [@turn the 22-character strinq NODE(LLINK,PttNK,INFO).

A. Summary of Predefined Procedures 138

For both arrays and data structures, the argument of
PRO'ICTiPE() is an object which is a family of variables, and
the result returned is a string which can be used to
determine all the valid selectors for members of that family
-- items or fields, as the case may be. (The difference is
that for arrays this information is provided in th@ argument
to the pred(~fined structure cr~ation procedure, for data
structures this information is qiven in the declaration of
the datatype., Tn the last example, for instance, 011e could.
obtain the valu~s of the fields of the object named by
CURnENT by ohtaintng its PROTOTYPR(l, then searching with a
pattern between the p~rentheses to find the strings
delimited by commas, and using the strings locatea in this
way as the first argument of APPLY() with CURRENT as the
seccn(\ argument.

~his idea is extended to objects of datatype Pattern
and datatype Name, by observing that although objects of
these ~atatypes are not families of variables, nevertheless
·they may have an inter.nal structure which a Snobol program.
may wish to investigate. A Pattern may be constructed of
many parts, fer instance, and a Name may indicate a family
plus a selector. Por this reason, the different kinds of
Patterns and Names are provided with predefined system
prototypes, strings which contain SUbstrings correspondinq
to the names of the predefined field selection proc~dures

(see section T.e of this aFpendix). Thus, the· structure of
Patterns and Names may be investigated in the same way as
that of programmer-defined data structures. ~he twenty-one
predefined prototypes fer patterns are given in the right­
hand cclumn of the following table.

E£edefined_£~!1~rn-y~ri~Ql~§

p :: ARB · PROTCTYPE(P)-> ARB 0,
P = RE r1 · PROTCTYPE(P)-> REM (),
P :: EAt · PROTOTYPE (P) -~> BAL (),
p = FENCF. . PROTCTYPE(P)-> FENCE ()•
p = FAIL PROTCTYP E (P) -> FAIL ()
P = ABORT PROTOTYPE{P)-> ABORT ()

A. Summary of Predefined Procedures

p = LEN (6)
P = FCS (6)
p = FPCS (6)
p = T1\8(6) .,
p = FTAB (6)
P = ANY('AEIOrJ')
P = NO "{'A NY (' AEIOU')
P -= SPAN (' I.EIOU')
P = EREAK('AEIOD')
P = ARRNO(ANy(SAEI0U'» .,

P = 'A' I 'B' I 'e'

P = 'A' ANY('AEIOU') ·C'

P = SPAN (' ~E!OU') • VOWFLS
P = ERfAK (' AEIOn') $ VOWELS

P = *VOWEL

PROTCTYPE (P) -> I.EN (PAR l\M)
PROTC~YPF(P)-> POS(PARA~)

PROTOTYPE (Pi -> RPOS (P!\ RAM)
PROTOTYPE(P)-> TAR(PAR~M)

PROTC~YPF(P)-> RTAB(PARAM)
PROTOTYPE(P}-> ANY(PARAM)
PROTCTYPE(P)-> NOTANY(PARl\M)
PRO'!'OTVPE(P)-> SP1\N(P~R~.~)

PROTCTYPE(P)-> BRF.AK(PARAM}
PROTCTYPF(P)-> ARBNO(PARAM)

PROTCTYPE(P)-> ALT(FT~ST,REST)

PROTCTYPE(P)-> CAT{FIRST,RF.ST)

PROTCTYPE (P) -> PRD (T.Ff-T, RTGII1')
PROTOTYPE(P)-> nOL(LEFT,RTGH'T')

PROTOTYPE (P) -> STAR (RI(;ilT)

Similarly, a Name may be the name of a natural variable
(one that is also named by a String), or one of th0 two
types of created variatles -- an Array item, or a fielo of a
data structure. There is a predefined prototype fOL each of
these:

VAR = .VOWELS
VAR = .LIST(I,J]
VAR = .RLINK (NODE)

PROTOTYPF(VAR)-) INDIR~CT(RIGHT)

PROTOTYPF(VARl-) ITE~(FA~tLY,SPLEr~O~)

PROTOTYPE(VAR}-> APPLY(SELECTO~,FAMIJ.V)

Notice that the Name of a natural variable, returnod hy
t.he name op~ri\tor, is a suitable dj,.·qumpnt for PROT01'YPE{);
the Strinq which names the same variable (in thp pxamp10
abov~, VOWELS) would causp an exerU1ion-tim0 0rror as ~n

arqument of PROTOTYPE().

A. 5ummary of Predefined Procedures 140

ALPHABET () Ret.urns: String

ALPHABET () returns the 63-character string which is the
5no~ol character set in standard collating sequence (see
ApI=endix I).

ALPHABETO

DATE 0 Returns: String

DATE(l returns a nine-character string representing the
current date, in the form 02cJULo72. The abbreviations used
for the months are the first three letters of their names.

DAT'e ()

CLeCK () Returns: String

C10CK() returns an eight-character string representing
the time of day at which the job is being run, in the form
19:03:S7. Hours are counted from zero through twenty-three,
minutes and seconds from zero through fifty-nine.

CLOCK ()

TIl1E() Returns: Integer

TTME(} returns the elapsed central processor time for
the job, expressed as an integer number of milliseconds. By
subtracting the value of one call to TIM~() from the value
of a later call, a programmer is able to determine the
amount of central processor time used by a particular part
of his program.

TIME ()

STCCON'I () Returns: Inteqer

STCOnNT() returns the count kept by the Snobol system
of the number of statements on which ex~ution is begun. Its
initial valu~ is, of course, zero when a program starts
executi.ng.

STCOU NT ()

A. Summary of Predefined procedures 14 1

5TL1I11T (In teqer) Returns: rnteqer

S'ILI'1IT 0 is used to set the Ii mi t on the nu Mher of
statements executed (the value of STCOUNT 0). Its initial
value is 1,000,000; lower liwits may ~~ set by the
programmer by calling STLIMIT() with a non-null inteqer
argument. An execution-time error results if STL!~rT() ~s

exceeded.. If calle~ with a null ".rgumAnt, STLI~'!T () rl2'tllrns
its cnrrent value and remains unchangeo ..

S '1'L I MI'r (, 200')

MAYLNGTH(Integer)

STLIMIT (5000)

Returns: Integer

STLI MI T ()

MAXLNGTH () is used to set the limit on the length of
strings which may be formed, in characters. Its initial
value is 131,070: lower limits may hp. set by a proqrammor hy
c a 11 i ng MA'{ LHGTH() wit h a no n - nu 11 i n t p g~ r ar qu In (' nt. r, n
execution-time error will result if an attpmpt is ma~e to
exceed this maximum length for strings. If called with a
nu 11 ar gum e nt, MAXL NGT ~i () ret urnsit s cur r e n t val u e and i s
ulichanged.

MAXLNGTH('200')

FNCtEVF.L 0

., MAXLNGTH (1)000)

Returns: Integer

MAXLN~'1'HO

FNCLEVEL() returns an integor value to in~icate thp
level of evaluation of nested or recursive procer! nr:0 c,~lls.

Its use is to provide a tracp of the evaluation for:
debugging of program loqic, or to preserve a record of th0
level cf evaluation causing a failure ouring execution. (At
an execution-time error, this information is displayed by
the system's error message.)

BEHAR K (TI ME ()

NEX1:VAR (Name)
NFXTV1\R(String)

,--, FNCI EVEL () ,[] DEEP"

Returns: Name
Returns: Name

NF.XTVARO
variable, or
variahle.

accepts as its arqumpnt the Name of a creat0~

~ither the Name or string naminq a natural

For cr~ated variab10s -- array itpms or fiplds of d~t~

~trurt.\lrp.s NgX'T'VAP () r~tl1r.n~, thp name of thn "next"
memter of the SdffiP. family. For "rrays, namp.s of items ar(~

A. Summary of Predefined Procedur~s 142

returned in the order obtained by varying th~ riqhtmost
index most rapidly. For data structures, names of fields are
returned in left to right order of their appearance in the
CATA{) declaration which defined the datatype. In both
cases, the ord er is cyclical ~ the name of the n fir st n member
of a family {under this definition) being the value of
NEX'IVAR () applied to the name of the "last .. member. Thus, if
the rule

LIST = ARRAY('O:2,O:2')

has been executed, the value of NEXTVAR(.LIST[O,O]) is the
name of the array item referred to as LIST(O,1), and the
value of NEXTVAR(.LIST[2,2) is the name of the array item
referred to as lIST[O,O]. Similarly, if the rules

DATA (INODE (lLINK,RLINK, INFO) .)
CURREN! = NODE ()

'have been executed, the value of NEXTVAR(.LLINK(CURRENT» is
the name of the field referred to as RtINK(CURRENT), and the
value of NEXTVAR(.IN~O(CURRENT» is the name of the field
referred to as LLINK(CURRENT).

If a statement such as

NEXT = NEXTV~R(NEXT)

is ~ritten in a loop, then the names of all the members of
the family to which the value of NEXT belongs will be
returned in order; but unless the programmer checks to see
when he is back to where he started, the loop will be
infinite. A suitable loop for going once through the fields
of a Node, then would be

SAVE = • lLIN K(Cn BRENT)
NEXT -= SAVE

LOOP (statements to process a field]
NEXT = NEXTVAR(NEXT)
IDENT (NEXT, SAVE) . F (LOOP).

NEXTVAR() is convenient for referring in turn to all
the variables of an array or a data structurp., but its
effect can he programmed in Snobol usinq PROTOTYPE(),
ITEM (), and APPLY (). (See an example of this in Ch~pter 1.'

The more iroportant use of NF.XTVARO arises from the
fact that it also treats the set of all natural variables as
a "family," and thus when given a String or a Name which
names a natural variable, NEXTVAR() returns the name of

A. ~ummar:y of Predefin~ci Procedures 143

another natural variable. Two important differences of
NEX!VAR() in this use should be noted. First, since there is
no defined orner for the natural variables, their names are
returned in an order which is convenient for NEX"!'V.~R () •
Seccnn, NFXTVA R 0 cannot cycle th rou qh the names of £1.1 t h~
natural variables, since there are an infinite numh~r of
them. Hpnce, it returns the names of a subset of the family
of natural variahles which is certain to include at least
the names of all variables with ncn-null values, ann may
also include the names of some variables uith null valups.
What is important is that by the time a full cycle has been
completed and the starting place reached aqain. the name of
every variable with a non-null value will have come up.
(When used with families of create~ variables, by contrast,
NEX'IVJ\R 0 is guaranteed to cycle through the names of ever.y
variable in the family in turn, regardless of thp.ir values.)
Observe that the names returne~ by NEXTVARO are sUhject to
the usual interpr~tat.ion of names. Tn partiCUlar, if
NEXTVARO i~ calle(l repeatedly in a loop wit.hin t.he hody of
a programmer-defined ~rocedure, and some process is carrie1
out on the variables referenced by the names returned, then
the names of variables internal to procedure calls will
refer to those internal variables. The customary
interpretation of what variable a name refprs to at any
point in the execution cf a program is not affected hy
NEXTVJ\ R () •

II.C

ITEM (Array,String, ••• ,String) Returns: variable, or fails

ITEM() provides a convenient way to write itpm
references for arrays chosen at execution-time, for arrays
which are the values of array items, or which involvn
variable numbers of dimensions. The first a~g\lment of ITF.M ()
is an array, and the following arguments are either inteqers
or els0. lists of inteqers separated by commas. TTF.M ()
const.ructs an item reference usinq the array which is it~

first argument for the family and the proper numher of
indices gathered from the remaining arquments to form thp
selector, iqnorinq extra indicps and supplying null (z~ro)

for missinq ones. ItEM () NRFTfJRNs thp. array itpm so
referenced. or FRETUBNs if any index of the selector. excee~s

the bounds specified by the prctotype for the array. If TIC]
has been assiqned the value

TIC] = ARRAY('1:5,1:5,1:3')

A. Summary of Predefined Procedures

then equivalent ways of referrinq to its central item are

TIC 3(3,3,2 1
IT~M (TIC3, 3, 2,2)
ITEM(TIC3,'3,3,2')
ITEM(TIC3,3,'3,2')

144

APPIY(string,any, ••• ,any) Returns: any or variable, or fails

APPLY () provides the only way to write procedure
refer.ences for procedures chosen at execution-time. The
first argump.nt of APPLYO must be a string which nam~s a
procedure; the Snobol system calls that procedure, using as
its arguments- the remaining arguments of APPLY () an;~

observing the usual conventions for extra or missing
arguments. APPLY () returns the value returned by the
procedure it calls, using the same return (RETURN, NRETnR~1,

or FBE'J'URN) ..

If APPLY{) is used to call a field selection procedure,
then its use is analogous to the use of ITEM() for item
references; the Snobol system forms a field reference using
the first argument as the selector and the second argument
for the family, and NEETURNs the field so selected.

FLD -:: 'RLINK'
APPLY (FLO, CURRENT) = TFrM {INPU'!',
RLINK (CURRENT) = APPLY (''!'nI~t, INPUT)

IF () Returns: null value

IF() always succeeds. 5ince it is defined to have no
arguments, any arguments in a reference to IF() are
evaluated but otherwise ignored. Thus if any part of that
evaluation fails, that failure causes failure of the rule.
If a reference to a procedure returning a non-null value is
written as an argument of an IF 0 ~rocedure, the combination
will work like a test procedure. The same principle applies
to ether expressions returning values which can similarly be
converted into test procedures.

N = IF (ARR1[N+1)} N + 1 .. F (OUT)

A. Summary of Predefined Procedures 145

ANCHOR (any) Returns: null value

ANCHOR () works like a switch, distinql1ish i.nCT betwPP!l
null and non-null arguments. Calling ANCHOR{) with a non­
null arqum0nt turns on the anchored mode of patt~rn­

matching; calling it again with a null argument restores thp
usual, unanchoreo monee

ANCHOR{'ON') ... ANCHOR (OFF) .
9 ANCHOR n

CONVER'f (Integer)
CCNVER'I(strinq}
CCNVFR'T(Real)

Rpt_nt"n~: RE'al
Returns: Real
Returns: String

CONVERT () is usefnl for creating and printinq real
numbers. If its argument is of datatype Integer, the valu p

return€~ is the corresponding real number. The only
permissible String-valued argument is a string of rliqits,
possibly inclu~ing an initial sign and possibly includinq a
decimal point; the returned value is the corresponding re~l

numher. If the argument is of datatype Real, the valu0
returned by CONVERT () is the numeral string r~pre~-;I?nting thp
r€al numhe~ to twelve digits. CC~VERTO is o0fineo for
integers and real numbers from abcut 10- 300 to dhout 10 30 °.

CONVF.RT(45) CONVERT('-57.fq~) ; CO~VER~(·.75')

CONVERT (HEJ\LNUMB) CCNVEP.T (TRIM (It!PfJT})

CODE(String) Returns: Co~e

CODE() accepts as its argu~ent a string which is a
Snobol program text; that is, a sequence of syntactically­
correct Snobol statements (see the definition of thp
construct <program text> in the syntax, App~ndix J), an~

returns as its valuA the corresponrling compiled Code; its
use, then, is to permit a proqram to extend itself while it
is executing. All characters in the Snobol character set,
including space, have their customary significance in thp
argument to CODE O. statement separators are semicolons, but
no final semicolon is required in the strinq.

+ , N
NnLP = CODE('IOOP
= LT(N,X) N + ,

BlWORV.. "A" =
S (l.OOP)

.,
~

F ($ (UL" X» ')

A. Summary of Predefined Procedures

INPO'I (string, String, Strinq) Returns: null value
INPU~(Name,string,String) Returns: null value

146'

INPUT() is used to associate a variable in a Snobol
program with an input file. ~he first argument is the name
of a variable to be used in the program; the second argument
specifies a SCOPE fileset; the third argument specifies the
number of characters to be read frcm each record on the
file. (Excess characters are lost; missing characters are
filled out with spaces.) If the variable is already
asscciated with a file, it loses its previous association.
It is through INPUT() -- and OUTPU~() -- procedures that the
Snobel program establishes contact with the files set up for
it by SCOPE.

INPUTC'READ','INPUT','SO')
INPUT('LNGR~ADER','DISKSRT',600)

INPUT{.LIST[12],'TAPE1',TRIM(INPUT»
INPUT (. LLINK (NEX~) " INPILE' ,80)

OUT PUT (5 tr ing, 5tri nq , st ring) Ret tlr ns: null value
OUTPUT (Name,string,String) Returns: null value

OUTPUT () is uset1 analogously to I tlPOT 0 , . to a ssocia t. e
variables in Snobol programs with SCOPE filesets which are
to be used for output; The first argument is the name of a
variable to be used in the Snobol program; the secon~

argument specifies a SCOPE fileset; the third argument is
the carriaqe centrol character which will be concatenated at
the head of every record written. (If omitted, none will be
concatenated.) If the variable is already associated with a
file, it loses its previous association.

OUTPUT('WRI~E','OUTPUT','-')

OUTPUT('PAGE','DISKFIL',1'
OUTPOT(.LIST[13),'TAPE",c')
OUTPUT('PUNCH','pnNCH')
OUTPU!(.RLINK(NEXT) ,'CUTFILE')

A. Summary of Predefined Procedures , LJ 7

DErrl\CH (string)
DETACH (Name)

Returns: null valu~

Returns: null valup.

DETACH{) is used to break the association between thp
variable named by its argument and any filcset. There is no
need to DETACH() an associate1 variable hefore qivinq it a
new as~ociation. (A variable may be associate~ with only on0
fileset at a time, but a fileset may have many variables
asscciated with it simultaneously.)

DEfJ'~.CH ('OUTPUT')
DE~' 1\ CH (, WRI TE')
DET1\CH (. LIST[12])
DETACH(.RLINK(NFXT»

ENrGBOUP (String,Integerl Returns: null value

ENDGROnp() writes a SCOPE en~-of-group mark on the
SCOFE Eileset which is specifieo by its first argument. fhp
nl(~vel" associated wit.h the mark is specifiE\d by the secon(l
argument, which must be an integer between 0 and 1S
inclusive. such a mark of any level will cause failure on
input if later read by a Snohol proqram.

ENDGROnp('TAPE20',Q) ., ENrGROUP('DISKFIL')

REWIND (Strir.g) Returns: null value

REi~ IN D () per f 0 (' ms a s tandard SCOP E (' e win '1 0 n t.h eSC0 P E
fileset specified hy its argument. ~he fileset is positione~

at its heginning; if the last operation on this file was a
write, an end-of-group mark of level zero is writt~n befor~

the file is rewound.

RF.WIND ('TAPE20')

- REMARK (String)

REWIND('~ISKFIL"

Returns: null value

RErt1ARK () is use~ to write the string which is its
argument onto the special file which is the job log. Ohviol15
uses are to preservA messages ahout the course of p-xPclltion
asscciate~ with timing information, anrl to d~corate the
dayfilp.~·;.

RfMARK('ENTFRTNr, FnEEZR TO ~~FF.20.')

Fr.~J\RK ('MOTHER IS DEAD. ')

A. Summary of Predefined Procedures 14A

FRFEZE (Str ing) Returns: string

FRREZE() is a procedure which permits a programmer to
susp€nd execution of a compiled Snobol proqram, and then to
re-load it and re-commence execution. The argument to
FREEZE() is a string which is the name of a SCOPE fileset.
When FREEZE() is encountered during execution, the Snohal
system writes out a copy of the entire field length of the
job onto the fileset specified by the argument, and
execution is terminated. SCOPE then reads and carries out
the next control card. When SCOPE finally hits a control
card asking that the Snobol program be reloaded, it does so
and execution continues from the point where it was frozen v

on a c a 11 ina pro 9 ram such, as F REEZ E (, T h PE 20 '" t h ~

program is "frozen" onto SCOPB fileset TAPE20. Execution
begins again when a SCCF~ control card is encountered of the
form LGO,TAPE20. There is no requirement, naturally, that a
frozen program te loaded and execute~ in the same joh in
which it was written out; it can perfectly well be saved on
a COMMON file, or on tape, or even punched out on cards.

It is a peculiarity of FREEZE() that it returns for its
value the string which is its argument. This could be used
to Freserve a record of which of several FREEZE()'s ha~ been
executed, hut FREEZE() is customarily written where its
returned value is not preserved.

FREEZE('DISKFIL')

EOI (st ri ng) Returns: null value, or fails

EOlO test-s whether the SCOPE fileset specified by its
argument is positioned at the en~-of-information on the
file. If so, the procedure succeeds and returns the null
value. If there is more information on the file, the
prccedure fails.

EOI (' 'fA PE20') .. S (CUT)

EORIEVEL{String) Returns: Integer, or fails

ECRLfVEL() tests to see whether the SCOPE fileset named
by its argument is positioned at an end-of-group mark; if
so, the level associated with the mark is returned as th~

value of the procedure call. (Such a mark is written by the
ENDGFOUP 0 procedure; the value. rp.turned by EORL EVEL () is

~. Summary of Predefined procedures 149

the second para'meter of the ENDGROUP () which wrot.e t.he maLk,
o tc 1S inclusive.) If the fileset is positione~ at en~-of­

infcrmation if the EOr() proc€dure would succeed -- the
value returned by EORLEVEL () is -,.

As a practical matter, a fileset will only hp
positione~ at an end-of-group mar.k if the last rpf0rence to
a variahle aSBociat€~ with that fileset failed; custom~rily,

then, a call to EORIEVEt () would only he mane aftcc ~

failure on input had occurred, to check the levpl of - thp
end-cf-group mark which caused the failure. If a c~ll to
EORIEVF,I, 0 is executed at any other time -- at any t.ime when
the fileset is not at an end-of-qroup mark -- thp. call to
EOBIEVFL 0 will it.self fail.

EQ(EORL~VFJ.,('TAPE20'),9)
LVL = ECTILEVEL('DISKFIL')

S(NINE)

Appendix B. SUMMARY OF PREDEFINED PATTERN VARIABLES

'50

7here are precisely six variables initialized to a
value other than the null value when execution of a Snobol
program begins: the six natural variables named ARB, REM,
eAI, F~IL, ABORT and FENCE. Each of these has a patt~Ln as
its initial value, but except for this initialization
receives no special treatment. Each may be assigned any
value by a program, upon which its initial value is lost.
This makes no great difference fer ARB, REM, BAt, or FAIL,
but the value of ABORT is a pattern which cannot he
constructed in any other way by a Snobol program, and FENCE
can be constructed only with the use of ABORT.

!RB~!Hl_l!~lt:. The pat.terns which are the in i tial va lues
of ARB and REM are equivalent in effect to two commonly used
patterns which may he constructed by pattern p~ocedures. ARD
is equival~nt to the value of the expression ARBNO(tEN(1»:
REM is equi"alent to the value of t.he expression RTAB (0) •
The Snobol system can and does distinguish between APR and
ARBNO(LEN(1}}, or between REM and RTA3{O); an IDBNT()
comrarison of such a pair will fail, and PROTOTYPE() will
return different prototype strings for them. But the
performance of either member of a pair in a pattern-matching
statement is exactly the same.

~AL~ BAt has as its initial valu~ a pattern which
matches any non-null string of characters which is
"balanced" with respect to parentheses -- that is, which has
t.he same number of left and right parentheses, including
none, where each left parenthesis occurs before its matching
right parenthesis. A pattern equivalent to the initial value
of BAL can be constructed in Snobol, thus providing a
precise definition of its action:

BALEXP = NOTANY (' () 'lIt (' ARBNO (:~BALEXP) ')'
BAL = BALEXF ARENO(BALEXPl

Again, the system distinguishes between the predefined BAL
and the pattern constructed by the rules above, but the two
would perform in the same way in a patt~rn match.

!!l~ FAIL has as its initial value a pattern which
matches no strings (not even the null value), and which thns
always fails. This makes it the lfeI11pty" pattecn alternative

ene which may be present in any pattern without altp.rinq
the set of strings matched. The eXFressions FAIL 1 LPAT and
LPA'I will match the same set cf strinqs, no matt.er Ilhat.
pattern is the value of LPAT. A pattern which would have the

B. Summary of Predefined Pattern Variables

same effect could be constructed by the rul~

FAIL = ANY (NULL)

151

One use for the empty pattern alt.ernative is to
construct an alternated pattern from dat.a. For instance,
with the statements

PATLOOP
IN. PA'!
IN. PAT

=
=

FAIL
IN.PAT t TRIM (INPUT) .. . S (PA TL 00 P)

Here the loop statement extends the alternatives of IN.PA~

by one more each time it is successfully executed. If thp
data read were the first three letters of the Greek alphabet
spelled out on cards, followed by failure of INPU~, then the
resulting pattern would he equivalent to

IN.PAT = FAIL I 'ALPHA' I 'BETA' , 'GAMMA'

which matches the same set of strings as does

IN.PAT = 'ALPHA' I 'BETA' I 'GAMM~'

Note that if IN.P~T had not been first assigned the value
FAIl, the resulting pattern would have been equivalent to

IN.PAT = NULl I 'ALPHA' I 'BITA' , 'GAMMA'

which is rather different -- since it will match the null
value (as its first alternative, in fact), it will always
succeed.

AF.ORT~ ABORT has as its initial valu~ a pattern which
causes immediate failure of an entire pattern match when it
is encountered. The usefulness of ABORT is that it p~rmits a
pattern match to fail if something i~ found. For instance,

SH.PAT = LEN(10) ABORT I ':'

is a pattern which will fail by ABORT if it is SRt to search
a string of ten or more characters; shorter strings it will
search for a colon. It will succeed, then, only on a strinq
of nine or fewer characters containing a colon. More
generally, pat.terns which have r;haract.p.rir;tics I? h1lt not (1
can oft.fln tin writ-tnn in t.hn. forln !.l ~D()H'r I I.! •

FENCE. Tht? ini.t.i.al valup, of PENr.'P. is a pattern whtr~h

has the-following i ntpresting prop0.rty: when encoun t0r("r' in
a pattern match it matchps t.he null value, and t.hp.n if th0
remainder of the pattern cannot he succesfully matche~ from

B. Summary of Predefined Pattern Variables 152

t hat pc i nt., the' ma t c h wi 11 fa i 1. A pat t ern wh i c h wau 1d ha ve
the same effect could be constructed by the rule

FE~CE = NULL I ABORT

When FF.NCE is used as the first element of a pattern,
its effect. is likp. wri ting PQS (0); it l1anchors" the pattern
so that it must match beginning with the first character.
When FENCE is used after other pattern elements, then its
effect is that of a conditional "anchor" applyinq only to
the remainder of the pattern, and only if the elements to
the left of FENCE within its alternative have been
successfully matched.

Appennix c. SUMMARY OF OPERATORS

'53

Q.E!:!~!.2!: .QE£r~.tiQ!l ft~£gQ~!l£~

unary * deferred Evaluation 7 (highes t)
unary . name 7
unary $ indirect reference 7

binary . conditional assiqnment 6
binary $ immediate assignment 6

binary * multiplication 5
binary I division 5

unary ... plus 4
unary - minus 4

binary ... a~dition .3
binary - subtraction 3

binary (] concat.enation 2

binary alternation 1 (lowest)

Appendix D. SUMMARY CF PFOCECUnE EXECUTION

154

When a call is ma~p. to a programmer-defined procedure:
(,) t be ar 9 \l men t s U Lee val u ate 11 ; (2) t ll\.~ va ria b lena rn e wh i c h
is the same as the procedure neme is made to refer to an
internal "r(?sult variable"; (3) the formal variable names
are roade to refer to internal "formal variables"; (4) any
additional names in the first argument of the DEFINE()
procedure rtr~ made to refer to additional internal
variables; (5) the formal variables are assigned the values
of their. corresponding arquments; (6) the result variable
and all additional internal variables are assigned the null
value; (7) control passes to the stat.ement of the procedure
body whose label is specified by the second argument of the
DEF1NE () proc~oure (this may be exrrcssed by default); (8)
execution of the statements of the procedure body continues
until a return transfer is executed.

When retnrn is made from a procedure using RETURN: ('l
the last value assign~d to the result variable is returned
as the value of the pr\.")cedure call; (2) the variables
previously referred to by the formal variable names, the
result variable name, and any additional internal variable
names, are restored; (3) execution of the calling statement
continues from the point of the procedure call.

~hen return is made from a proc~aure using NRETURN: the
variable ncmed by the last value assigned to the result
variable {Which must be a string or a Name} is returned as
the value of the procedure call: the remaining actions are
the same as for RF.TURN.

When r~tUI:n is made from a procedure using FR~TURN: (1)
the variables previously referred to by th~ formal variable
names, the result variarle name i an1 any additional internal
variable names are restored; (2) the call fails, the rule
from which the call was made fails, and control is returnen
to the go-to of the callinq statement wher~ the failure
transfer will be taken.

Appen(lix H. FROGRAM TEXT REPRESENTATION

155

Each statement of a Snobol prcgram is usually punchec1
on a separate 80 column card. Only the first 72 columns,
however, may be used for the statement; the remaininq
columns may be used for purposes of identification. (For
examFle, sequence numbers may be punche~ there which woul~

allow JUU to put the deck back in order, either by han1 or
with a m~chanical sorter, if the cards should be
disarranged.) All columns of the card appear in the printed
listing of the program when it is executed, but 10 sp~ces

~re provided between columns 72 and 73 to separate any
identification from the statement.

~!~!~mgn~_f2£m~!~ If the label of a statement is
present it must be punched starting in colnron 1. If t.he
label is absent and the rule is present., then column 1 must
be left empty and the rule may be punched beginning in
column 2 or beyond. If the statement consists only of a qo­
to, the colon introducing it may he punched in column 1.

Wherever a single blank occurs in a statem~nt, any
numher of blanks would serve as well; wherever many blanks
eccur, a single blank would serve as well. Since all parts
of a statement may be absent, a totally blank card is
treated as a null statement.

!he semicolon may be used as a delimiter hetwe~n

statements, making it possible to punch more than one
statement per card. The semicolon signals the end of a
statement, so the column directly after the semicolon is
treateo as "column 1 11 of t.he followinq stat.ement. For
e x amp1 e , f 0 \l r ass i q n men t s t a't e men t. s. may be punc hP (1 0 n (}
single card as follows:

ONE == 1: TWO = 2; THREE = 3;LAST FOUR = 4

Not.e that the final statement of the sequence has a label,
while the others no not. A semicolon is assumed at th~ 0n~

of a card which is not followe~ hy a continuation car~.

~Qniinll~il£rr_£~f1~~ More commcnly, a rnethoo is nee~e~

tor dealing with statements which arc too long rather than
too short. Statements which are toe lonq to fit on a sinqlp
car~ may b~ continuPd onto as many car~s as necessary. This
is ~one by means of continuation cards, pach of which has
eithE't" a plUS sign or. a pcrio~ pllnchpn in r.olllmn 1,
indicating that. it.s information is (\ r.ontinl1ation of
\f hat everap pe d r e ~ 0 nth e for (A q 0 i nq C dlll. s t (1 t (.> mfa nt. s rn a y h(\
broken anywh(~t:'c; a hlank is neVt-~r assu!T10.d at. th~ brpr\k.

H. Program Text Representation '~6

£f~~n!_£~!ds~ Comments may be introduced into the
program with the use of ccmment cards, which are
distinguished by having an asterisk in column 1, and any
other information in the remaining columns. Comment cards
may apFear any~hece within the program deck except directly
before a continuation card. Comments themselves m~y nQi be
continued by placing a plus sign or a period in column 1.

listing-fQnt£ol_£~Id5~A card ~ith a minus sign in
column 1 is a listing contrel car1, used to specify the
format of the listing which is produced by the compiler. The
word appearing after the minus sign specifies what is to be
done to the listing, as follows:

-SPACE Leave a blank line in the listing.

-EJECT Print the next statement of the compiler
listing at the top of a new page.

-UNLIST
text until
encountered.

-LIST

stop printing the statements of the
a listing control card specifyinq

Resume printing the program text.

program
LIST is

Listing centrol cards, like comment cards, may appear
anyWhere within the program deck except directly before a
continuation card.

]xt£n1~Q_2~ntax_Qf_~nobQl-~!~tgggnts. In addition to
the forms used for ,them in example program texts, certain
language elements have alternat~ve representations.

Array Prototypes. Instead of colons in the argument of
the ARRAY() procedure, slashes may be used. The rules

LIST = ARRAY('O:2,O:3')
and

LIST = ARRAY('O/2,O/3')

would assign identically-dimensioned arrays as the value of
LIS!. The PROTOTyrE() procedure returns colons in its
cancnical version of the prototype string, regardless of
which character vas used in the argument of ARRAY().

Item References. Instead of
around the selector of an item
parentheses and adjacent slashes
LIst[2,3] and LIST(/2,J/) are
the same item reference.

left and riqht bracket~

reference, a combination of
may be used. For example,
alternative ways of writing

H. Program Text Representation 157

Go-to Parts. Rather than a colon to introduce a go-to
part, a slash may be used; but a slash used for this purpos~

must not be followed by a blank. Thus,

VOWELS-: TRI~(INPUT)

and
VOWELS = TRI M(INPUT)

are equivalent statements.

: F(ERROR)

IF (ERROR)

Instead of left and
(used cnly in connection
Farentheses and adjacent
the same way as for
statements

right brackets in direct go-to's
with ohjects of datatype Code), the
slashes notation may he used, in

item references. Thus, the two

RESULT = CCDE(TRIM(INPUT» : [RESULT]
and

RESULT = CODE(TRIM(INPUT» : (IRES ULT /)

are equiva lont , as is

RESULT = CODE (TRIM (INPUT» I (/RESULT Il

Pattp.rJl Alternations. The alternation operator may hp.
written as tw6 adiacent slashes, hounded by blanks, instea~

of the usual single character. Thus, X f Y and- X // Y may he
written with the same effect.

String Literals. Within string litprals,all charactors
other than the quotation mark (single or double) being uspn
as the rlelimiter of that litpral may be used freely. Thp
delimiter character may occur within tbe strinC"} only in
pairs, and each such pair will be taken to represent a
singl~ instance of the character. For example, the rulps
c~ntaininq a single string literal each

AWW = """All'SoWELL"""
3nd

AWW = '''AIL' 'SoWELL'"

are equivalent to the rule containing a concatena~ion of
three string literals

AWW = 'UALL' "'" I SeWELL'"

Any cne of them would assiqn to AWW the 12-character string
" A1.1 • S WEJ. L " •

Appendix I. CHARACTER SE! REPRESENT~TIONS

158

The Snobol character set consists of sixty-three
characters: the capital letters A-Z, followed by the digits
0-9, followed by the remaining characters in the order

+-*/ () $=0, .::[]: 1+1 A".J.<>~~•
~his ordering of the sixty-three characters is called their
standard collating sequence. Fifty-four of these playa part
in the syntax of the lanquage (see Appendix J), and have
equivalents in the reference symbol set used to construct
program texts; the remaining nine characters may occur only
in string literals or in data read frcm input files.

Program texts in examples are shown in symbols from the
reference set. For input each of thesp. must be represented
by a punched card code produced on a keypunch (either monel
026 or model 029); for output each will be represen ted by a
·character on a line printer. Each symbol of the reference
set has a single card code, and a single printer
representation. Each card code and printer representation
corresponds to a sir.qle reference symbol, except for one
special case: the blank used to separate language elements
and the space character (0) used in literal data have thp
same card code and printer r~presentation, although they are
differentiated in the reference symbol set for' clarity.

The reference symbol set consists of the twenty-six
capital letters, ~he ten digits, and nineteen special
characters. Codes for th~ letters and digits are produced by
the keys marked with them on both an 026 or an 02Q keypunch,
and all have the expected representation on a line printer.

The special characters in the reference symbol set are
shown in the accompanying chart. On an 026 keypunch, codes
for the reference symbols are produced by keys marked with
t.he same symbols where they exist, but six symbols (:;'" [])
have no keys and so they must l:P. mUltiple-punched. (In

. 5ncbal expressions--not, ohviously, in literal data--these
six symbols may be avoid~d by usinq the extended syntax
described in Appendix H.) On an 029 keypunch, codes for all
but ene of the reference symbols (I) are produced by some
key, but most of the keys are marked ~ith different symbols.
On a line printer, all but three of the reference symbols
(1"1) look like their counterparts in the reference set. The
final nine characters in the chart are those without
equivalent reference symbols.

I. Character Set Representations

Snobol 026
symbol key

card
code

line print~r

character
Snohol
usage

=========================:==================================
= = 8-3 =

(equal)
ass i gn mpnt #

• 12-8- 3
(period)

condit. assiqn., •
name, real lit.

, , 0-8-3 , list ,
(comma l separator

._.____________.___ --::=:-:':"' ,"_=," .C'::.:c.. ~___

· none 8-2 · go-toes, arr- ay .· · .
(colon) prototypPs

none , 2-8-7 ·,
(semicolon)

stat.ement
terminat.or

8-4 1- st.ring liter al G)

(not equa 1) delimit~r

------ -----------
n none 1 1-8- 5 + strinq lit p.r al

(n p arrow) delimit.er

$ $ "-8-3 $ indir.ect r~f. , $

(0 olla r) immed. assiqn.
-.------..---- -----.....----~------------

none 11-0 v alternation non~

(logical or)

(0-8-4 { arg. 1 is ts , %

(left pa ren) expr. gr all pi ng
~----------------------

12-8-4) arg. lists, <
(r igh t paren) expr. qrouping

-~-----

[none 8-7 [itei,l ref., "
(left bracket) direct go-toes

....----
] none 0-8-2 J item ref. , 0- H- 2

(right bracket) direct. go- to's

1 1 neqative,
(minus) subtraction

+ 12 +
(pIns)

positive,
addition

f,

I. Character Set Representations 160

Snobol
symbol

026
key

card
code

line printer
character

Snobol
usaqe

02')
key

===========~=======================================:==:===~=

• * 1 1-8- 4 * deferred eva 1. , *(asterisk) multiplication
--- -------- --------,----

/ / 0-1 / division I
(slash)

blank space blank concatenat ion, space
bar (space) separator bar

--------- ----------
IJ space blank data only spacp

bar (s pace) bar
--

none 0-8-6 - data only >
(identi ty)

none 0-8-5 + data only
(r igh t arrow)

none 0-8-7 A data only ?
(lcqical and)

nont~ , 1-8-6 .J. data only .
t

(down arrow)

none 12-0 < data only none
(less than)

none 11-8-7 ') data only
(great.er than)

none 8-5 ~ data only ,

(less or equa 1)

none 12-8-5 ~ dat~ only
(greater cr equal)

none 12-8-6 ~ data only
(logical not)

(

+

Appendix J. SYNTAX OF PROGRAM TEXTS

161

1. <string literal> ::=
, <string format 1> '
" <string format 2> "

2. <digit strinq) ::=
<digit> I
<digit string> <digit>

3. <integer literal> ::=
<digit string>

4. <real literal> ::=
<digit string> • J
• <digit string> 1
<digit string> • <digit string>

5. <literal> ::=
<string literal> I
<integer literal>
<real litp'l:al)

6. <identifier> :~=

<letter> I
<identifier> <letter> I
<identifier> <diqit> I
<identifier> •

1. <simple variable> ::=
<identifier>

8. <subscript list> ::=
<exprpssion> I
<subscript list> <,> <expression>

9. <array item reference> ::=
<simple variable> <[> <subscript list> <]>

10. <procedure identifier>
<identifier>

..­.. -

11. <arqumpnt list> ::=
<optional expresion> I
(argument list> <,> <optional expression>

J. Syntax of Program Texts

12. <procedure' reference> ::=
<procedure identifier> «> <argument list> <»

13. <variable> ::=
<simple variable> I
$ <primary> I
<array item reference>
<procedure reference>

. 14. <primary> ::=
<literal> ,
<variable> ,
• <variable> I
«> <expression> <»

15. <factor> ::=
<primary> 1
<factor> <blank> ** <blank> <primary>

16. <mUltiplying operator> ::=
<blank> * <blank> 1
<blank> / <blank>

162

1'7. <term) ... ­... -
<factor> I
<term> <multiplying operator> <factor>

18. <adding operator> ::=
<blank> + <blank>
<blank> - <blank>

19. <sum> .. ­.... -
<term> I
+ <term>
- <term> I
<sum> <adding operator> <term>

20. <concatenation> ::=
<sum> 1
<concatenation> <blank> <sum>

21. <expression> ::=
<concatenation>

22. <deferred pattern> :: =
* <variable>

J. Syntax of Program Texts 163

23. <pattern assignment opp.rator)
<blank> $ <blank> I
<blank> • <blank>

• •=..

24. <pattern assignment> ::=
<pattern primary> <pattern assignment operator>

<variable>

25. <pattern primary> ::=
<literal> I
<variable> ,
• <variable> ,
<deferred pattp.rn> ,
<pattern assignment> I
«> <pattern expressicn> <»

26. <pa tt ern fact or> :: =
<pattern primary> I
<pattern factor> <blank> ** <blank> <pattern primary>

21. <pattern term> ::=
<pattern factor> I
<pattern term> <multiplying operator> <pattern factor>

28. <patter.n sum> ::=
<pattern term> I
+ <pattern term>
- <pattern term> ,
<pattern sum> <adding operator> <pattern term>

2q. <pattern concatenation> ::=
<pattern sum> I
<pattern concatenation> <blank> <pattern sum>

30. <pattern alternation> ::=
<pattern concatenation> I
<pattern alternation> <blank> <I> <blank>

<pattern concatenation>

31. <pattern expression> ::=
<pattern alternation>

32. <optional expression> ::=
<null> I
<pattern expression>

33. <label> ·.-·.-
<identifi~['>

, J. Syntax of Program !exts

34. <la be 1 pa rt> :: =
<null> I
<label)

35. <right side> ::=
<=> <optional expression)

36. <rule part> ::=
<null> I
<blank) <primary>
<blank> <~rimary> <blank> <pattern expression> I
<blank> <variable> <right si~e> 1
<blank) <variable> <blank> <pattern expression>

<right side> .

37. <loc> ::= <location expression>
«> <label> <» ,
«> $ <primary> <» I
<[> <expression> <]>

..­.. -

38. <go-to part> : : =
<null> 1
<:> <loc) I
<: > S <loc> 1
<:> 11 <loc) I
<:) S <loc> <optional blank> F <1oe>
<:> F <loc> <optional blank> S <loc)

39. <statement> ::=
<label part> <rule part> <go-to part>

40. <program text> ::=
<statement> I
<program text> <;> <state~ent>

41. <letter> ::=
A I B
N I 0

c
p

D
Q

E
R

F
S

G
T

H
U

I
V

J
W

f{

X
L
Y

M
Z

1.1 2.

1.1 3.

<digit>

<blank>

· .-· .-
011 I 2 ,3, 4 I 5 , 6 I 7 I 8 I 9

·.-·.-
t1 I <blank> a

<optional blank>
<null> I
<blank>

..­.. -

J. Syntax of Program Texts

45. <string format 1> ::=
<null> 1
<string format 1> <class 1 character>

46. <class 1 charucter> ::=
<any character except I) I It

165

47. ~~+r;nn ~n~M~. ~, •• ­
.......... 6. A. U ~ .L V &. UI Q \,. L " ..-

<null> I
<string format 2> <class 2 char.acter>

48. <class 2 character> ::=
<any character except n>

49.

50.

51.

52.

< (>

<»
<[>

<J>

<I>

·.-·.
.. ­·.
· .-· .

·.-·.-

: :=

(<optional blank>

<optional blank>)

[<optional blank> I
(I <op~ional hlank>

<optional blank>] I
<optional blank> I)

<the character I) I II

54. <:> ::= <optional tlank> : <optional blank> 1
<optional blank> I

55. <,> ::= <optional blank> , <optional blank>

56. <=> ::~ <optional blank> = <Of tionaI blank)

51. <;> · --·.- <optional blank) :

58. <null>:: =

Appendix K. SU~MARY OF CCMPIIE-TIME ERROR MESSAGES

166

Each statement which is syntactically incorrect is
marked in the program listing by an up arrow which is
printed ben~ath its statement number along with the message
ERRCR. It is planned that in the future a specific message
for each particular type of syntactic ~rror will be
provided.

Appendix L. SUMMARY OF EXECUTION-!IME ERROR MESSAGES

161

When an error is detected during the execution of a
Snobol proqram, the Snobol inter~reter writes a message on
the output file and then ceases execution. The messaqe
ccn~ists of three parts: (1) the ident.ifying number of th~

statement being executed when the error was detected (each
statement of the proqram text is given a nttl'1bpr by the
comFiler, and these numbers app~ar at the left of the
statements in the compiler listing of the program text); (2)
the level of procedure execution at the time the error was
detected (the sam~ informdtion which would be returned hy
the predefi.ned procedure FNC1EVEL ()); (3) one of th e error
messages from the list below, specifying which of the fifty­
two possible error.s was detected.

Some of the messages in the following list are self­
ex~lanatory. Notes have been added to many messages
am~lifying them, or explaininq terminology which differs
from that used in this description of Snohol, or
reccmmendinq page numbers and sections where further
information relevant to the interpretation of the message
can be found.

THE LEFT OPERAND FOR A PATTERN MATCH MUST BE A STRING.

TEE
PAT'rF.RN.

nTroum
l1.J.\'fOl. OPERAND FOR A PATTERN MATCH MUST BE

PA!TERN MA~CH WITH REPLACEMEN! REQUIRES STRING-VALUPD
RIGHT HAND SIDE.

TRANSFER TO AN UNDEFINED LABEl. A go-to specifies a
transfer to a label which is not present in the program
te~t, and which is not RETURN, FRETURN, NRETURN, or END.

A r" AlLURE OCCU RRED IN THE EVA LU ATION 0 F THE GO-1'O
PAR!. Conditions which woulrl cause failure in t.he rul~

part of a statement cause an error in the qo-to part (see
page 68) •

TYPE PRROR IN (;O-'!O PART. Eit.her. the operann of an
in~irect rpfpr.~ncinq oppr~t.or in thp qn-to i~ not a strinq
or a Name (see p(lq(' (7), or else thp value of th~ pxpr(\s~:;ion
in a direct qo-to is not an object of datatype Code.

FORBIDDEN OPERAND TYPE FOR ALTERNATION. Operan~s of
the alternation operator must be of datatypp ~trinq,

Integer, or Pattern (see paqe .3S).

L. Summary of Execution-time Error ~es5age~ 168

TEE D~TA T~PE USED MAY ONLY B! CONCATENATED WITH THE
NULL S!RING. ~trinqst Tntegers, and Patterns may be
concatenated freely. An object of any other data type may be
concatenated only with the null value.

1EE VALUE OF A VARIABLE IN A DEFERRED-EVALUATION
PATTFFN (UNARY.) MUST BE A P~'TERN OR STRING. See the
description of the deferred evaluation operator, page 50.

LEFT OPERAND FOB BINARY $ ANt • ~nST BE A PATTERN.
See the d~scriptions of the immediate and conditional
assignrr.ent cperators, rages 38 and 40.

INDIRECT RfFERRNCE TO THE NULL STRING. The operand of
the indirect referencing operator may not be the null value
(see page 57).

OPER~ND FOR INDIRECTION MUST BE NAME OR STRING. The
operand of the indirect referencing operator must he a
string or a Name (see page 57).

NCN-INTEGEF STRING USED IN NUMERIC CONTEXT. Only
strings of datatype Integer these consisting of an
optional sign followed by an optional string of digits
may be used where Integers are expected.

TYPE ERROR IN NUMERIC CON~EXT. An object of either
~atatype Integer or Real was expected, but an object of some
other datatype occurr~d.

DIVISION BY ZERO WAS AT!EMPTED.

S!P.ING ARITHMETIC NO~ YET tMPIEMENTED. Integers may
have values of magnitudes as large as 10130000, but the
arithmetic operations are defined only for integers of
magnitudes less than '0 1 °. It is intended that the
arithmEtic operations should be extended to integers as
larqe as can be represente~, by performing "string
arithmetic" on the digit strings of which they are composed.

FEAt AnITHM~TTC OVER~LOW. A real number larger than
can be represented has been producen (about 10 30 °'.

MIXED MODES (INTF.GER, REAL) FCR ARITHMETTC OPERATION.
The operands of arithmetic operators (and the arguments of
predefined arithmetic t~st procedures) must be of the same
datatype. If operands of different data types are to be
operated upon, one must first be converted (see the
description of CONVERT() in Appendix A, section II.C).

L. Summary of Execution-time Error ~essages 169

WRONG PARAMET~R TYPE FOR STANDARD PROCEDURE. An
argument of a predefined procedure is of an incorrect
datatype. pp.rmissible datatypes of arguments for all
pred~fined procedures are given in Appendix A.

ARGUMENT FOR LEN, POS, RPeS, TAB, OR BTAB MO~T BE IN
THE INTERVAL [0,2**17-11. The integer arguments to these
five predefined pattern procedures must be non-negative, and
must he less than 131,072.

SYNTAX ERROR IN STRING TO BE COMPILED. An
string for t.he CODE () procedure is incocrect;
description of CODE() in App~ndix A, section II.C,
Syntax of Program Texts in Appendix J.

argument
see the

and the

INCORRECT SYNTAX FOR STRING TO BE CONVERTED TO REAL.
See the description of CONVERT () in Appendix A, section
II.C.

IMPROPFR ARGUMENT FOR PSEUDO-FIELD FUNCTION (FIRST,
REST, LEFT, RIGHT, P1\RAM, FAMILY, OR SF-LECTOR). Thp
arguments of the predefined fipld selection procedures
PAR 1\ M() , fIR ST () , RF. S'I () , I.EFT () , RIG HT (), F rt t1 TL Y (), a n <1
SELECTOR() are quite specialized; sep the descriptions of
these procedures in Appendix A, section I.C.

CALL OF AN UNDEFINED PROCEDURE. The DEFIN~()

declaration for a programmer-defined proce~ure must he
execut ed b~ fore it can te in va kerl (see paqe 72).

SYNTAX ERROR IN PROCEDURE PROTO!YPE. There is an
error in the form of the string which is the first argument
of the DEfINE() procedure (see 'page 72).

RETURI1 FROM LEVEL ZEllO. A transfer to RE7URN,
PRETUHN, or NqETURN has been executed in a main proqram (see
page A7).

AN ~NBETURN- WAS EXPECTED FRO~ THE PROCEDURE CALLED.
A procedure call occurs where a variable is reqUired, but
the procedure doe~ net rp.turn hy NRF.TURN; see the
description of NRP.TURN, page 90.

" PROCr.OUPF RETfJRNTNr. nv -NnETnnN- MUST ~"PPLY A N"M~

" S ! 'I' S V" L lJ r. • Whf' naproc fHh I r n r p t. II r nshy N11 F~'r (J HN, t" (\
",alue of th(~ ["(\!;ult vd·r.·iclbl(~ must hp. d ~)trinq or an olJ1ect
of: datat ype NamE; S~(~ the dp.scription of NRF.1'TJRN, page 90.

VARIABLE TO TilE LF.FT OF A r DOE5 NOT CONTAIN AN
ARRAY. 1'he valuA of the family part of an item referenc~

L. Summary of Execution-time Error Messages 110

is not of datatype Array. See the description of item
references, page 101.

!OO MANY SUBSC~IPTS IN AN A~~AY REFERENCE. There are
more index eXFrcs~icns in the selector of an item referenc~

than there are dimp.nsions defined for the family being
indexed. See pages 106 an~ 10Q.

TOO FEW STIBSCRIP1S IN AN ARRAY REFERENCE. There are
fewer index exrressions in the selector of an item referencp.
than there are dimensions defined for the family being
indexed. See pages 106 and 109.

ILLEGAL
description

.104. •

CHARACTER IN ARRAY PROTOTYPE. See the
of the argument for the ARFAY() procedure, page

SYNTAX ERROR I~ ARRAY PRO~OTYPE. See page 104.

LOWER
PRO~01YPE.

BOUND GREATER THAN
See page 104.

OPPER BOUND IN ARRAY

AN ARRAY BOUND WAS TOO LARGE. An expression for an
upper or lower bound in an Array prototype was greater in
roagnitude than 131,071.

AN ARRAY DIMENSICN W~S TOO tARGE. The difference
tetween any pair of upper and lcwer bounds was greater in
magnitude than 131,071.

AN ARRAY MUST CONTAIN FEWER THAN 2**11 ELEMENTS. A
prototYFe string for the AFRAYO Frocedure specifies an
array containing more than 131,071 items.

theSeeSYNTAX EFROn IN SELECTCR FOR ITEM().
description of th~ ITEM() procedure, page 108.

SYNTAX ERROR IN DATA PROTOTYPE. See the description
of the argument of the DATA() proceoure in Appendix A,
section II.A.

DUPLICATE NAMES IN DATA PROTOTYPE. Two fi~lds defined
for objects of a single ~atatyp~ may not have the same name,
nor maya field narne be the same as the data type
otherwise all the necessary procedures could not exist
simultaneously. See the descriFtion of DATA() in Appendix A,
section II.A.

D~TA CONS!PUCTOF
creation procedures,

C~NNCT SnprLY A NAME. Structure
predefined or programmer-defined, do

L. Summary of Execution-tiffie Error ~essage5 171

not return ~ames, but rather objects of datatype Array or of
a prcgrammer-defined datatype, respectively.

THE PARAMETER FOR A PIELD
REFERENCE. The argument of
selection proce~ure was not an
defined datatype.

FUNCTION WAS NOT A DATA
a programmer-defined fiel~

object of a programmer-

NO 5UCH FIELD IN THE REFERENCED DATA STRUCTURE. The
structure which is the arqument of a programmer-define~

field selection procedure does not contain a field
identified by that procenure name.

FILE SPECIFIED TO I/O PROCEDURE MUST BE CURRENTLY
ATTACHED. 7he filesets namen by the arguments of
END GR0 UP () ,. RE WIN D(), EO BLEV ~L (), and EO I () mus t b P.

currently associated with some variable (see hppendix A,
section 11.0).

ILLEGAL FILENAME GIVEN TO tlO ASSOCIATION PROCF.DTJRF..
A legal SCOPE fileset name is a string of one to seven
letters and digits, beginning with a letter (see Appendix A~

section II.D).

~'TEMPT TO READ PAST END-OF-INFORMATION. See thp
desc~iptions of F.ORLEVELO and ROl() in Appendix A, section
II.D.

STRING TO BE DISPLAYED WAS LeNGER THAN 80 CHARACTEPS.
The string which is the argument to the RFMARK() p~ocedure

must contain 80 or fewer characters.

ONLY STRINGS MAY BE OUTPUT. A value of a datatype
other than String or Integer was assigned to a variable
which currently hag an output association.

'fA'F: MAXJMtlM FIELD LENGTH HAS BEEN EXCF.F.DED. The
pro 9 ram r e qui t: P. S m0 res t () rag e t. 0 e x P. r. ute t han was rp. <J U H S t. 0. ~ •

THE MAXIMU~ STRIN~ LENGTH HAS AHEN EXCEEDED. See the
description of MAXLNGTH () in Appendix A, section II. D.

TP.E STATEMENT LIMIT HAS BErN EXCBEOED. See thp
descriFtion of STLIMIT() in Appen~ix A, section IT.n.

CO'1PILER STACK OVERFT.OW, SIMPllFY THE CONS'T'RtJC"I"ION. A
storage arpa for intermediate results in th0 Snobol compil~r

has be P.n ex ha tl S t c c1 • '1' he s tat e men t s h0 til d b~ r e wr i t. t.P. n as t 'Ii 0

or more stat.ements, since it contains too many l~vels of
nested parpntheses.

Appendix M. Non-standard Featur~s of Berkeley Snobol

172

The initial design and implementation of Snobol4 vas
done at Bell Telephone Laboratories for I~~ SY5tem 360
machines. The lat~5t versicn of this implementation is
descrited in !he__ SNOBOL~__££22f2ill~iQg__1~rr1~~gg by F. E.
Grisvo11, J. F. Poage, and I. P. Polonsky (spcond ~rtition,

Prentice-nail, 191 1). This book contains many interesting
examples and should be of use to all serious Snohol
programmers, even those who are working with non-standard
implementations for oifferent machines.

The implementation descrihed here was produceo at the
Computer Center of the University of ·California at Berkeley
by Faul McJones and Charles Simonyi for CDC 6000 series
machines. The language they implemented, which we shall call
the Berkeley version, is non-standard since it differs from
the Bell version in three basic ways: some features of the
language arp, handled differ.ently, some features are absent,
and seme new features not present in the Bell version are
provided. This appendix describes the differences between
the nell v~rsion and the Berkeley version, presenting the
informati.on in terms of these three types of differellces. It
is prcvided to make this more comprehensible description of
the Snobol language useful to those writing programs in th~

Bell version, an~ to specify which parts of the Bell
documentation are useful for those writing programs in the
Berkeley version of the language.

Quite apart from differences between the two versions
of the Snobol language, there are some differences in
terninology between the documentation of Griswold~ Poage,
and Polonsky, and the present description. The pairs of
terms in the following table are equivalent, and represent
~ifferences in the descriptions only, not in the language
ver~icns described.

prinitive
defined
fUl1cticn
predicate
value cf function name
forn'al argument
local variable
function procedure
entry point

preoefineo
programmer-defined
procedure
t.est procedure
value of result variable
formal variable
internal variable
procedure hooy
entry label·

M. Non-standa~d Features

explicit name
created name
implicit nam~

generated variable
aggregate
referencing argument
arr.ay element
array [P-ference
field function
source program
statement component
subject (assignment)
sUbj@.ct (pattern match)
objEct
comFilation error
program error

string name
Name
Name
indirect r~fp.rence

family
selector
array item
item reference
field selection procedure
program text.
statement part
left side
string ref0.rence
right side
compile-time error
execution-time error

111

PtOCe~ure5. In the Bell versicn, it is an execution­
time --error--to call a predefine(l procedure with morp.
arguments than its definition prescribes; in the Berr.el~y

version, extra arguments to all procedures are evaluated but
otherwise ignored.

Since the character sets of IEM System 360 machines ann
CDC 6000 seri~~ machines are <liffercnt, thf" l\LPHJ\P,P,,,()
procedure, which returns a ~tring specifying the char~ctpr

set in standard collatinq sequence, necessarily returns a
different string in the two versions. (This procedure exist~

as a keyword in the Bell versicn.)

Since the Bell system uses FORTRAN IV I/O, and th~

nerkeley system does its own I/O, t.he INP'JT () and OUTPUT ()
prccE~ures require quite different sorts of arguments.

The ARRAY() procedure has two arguments in the Rell
version, the second specifying an initial value to be
assigned to all items of an array. In the Rerkeley verSion,
the ARRAY{) proce~ure has one argument only; all items aI:'0
initialized to the null value.

~ince numeric strings are of ~~tatypp. Tnteqer in th0
Aerkeley veI:':,ion, IDENT ("', l' succP8ds whilp in thp Roll
v~ I:' S ion i t f ~ i b"1 • I nthe fh~ 11 vcr s ion, p11 t t 0 r ns <1 t" P

con~i~ered irtentical only if they are indeed thp. samp.

H. Nen-standard Featur.es

fattern. Thu~

x = A I B
Y -= A I B
IDE NT (X, Y)

1711

fails ~ince two different copies of the pattern are being
ccmfare~. In the Berkeley version this comparison would
succ€e~, since patterns with the same structure are
conEidered identical. IDENT(.VAR,'V~R') fails in the
Berkeley version while it succeeo~ in Bell ovinq to tho.
different irnplereentations of the Name operator (described in
the section on operators below).

The CODE() procedure in the Berkeley version does not
allcw labels to be redefined; consequently the labels of the
statements which are to be added to the program durinq
execution must be different from any existing labels of the
program.

The Bell version provides more datatypes than does the
Berkeley version and much more flexibility about convertinq
from one datatype to another. In the Bell version, the
CONVER'I () procedure which is used for th is pu rpose has t YO

arguments; the second argument specifies the data type to
which the first argument is to be converted. In the Berkeley
version the CONVERT() procedure has only one argument since
only a limited kind of conversion is available. Tf the
single argument. of CONVERT (l is a numeral st.rinq or an
integer, it is converted into a real number; if the single
argument is a real number, it is ccnverted into a string.

Q~.r~!Q!:§.:.
implemented as
II.C).

The interrogation operator (1) has been
the IFO procedure (see Appendix A, section

The unary operator * is called in the nell version the
unevaluated expressicn operator, and expressions introduce~

by it are of datatype Expression. 1his operator is defined
more narrowly in the Berkeley version. It is called the
deferred evaluation cperator, and roay be applied to simple
variables only; thus *EQ(X,Y) causes an execution-time
error. The datatype F.xpression is not defined in the
Berkeley versicn: expressions introduced by the deferred
evaluation operator are of datatype Pattern. Hence LEN(*V)
causes an execution-time error since the argument of LEN()
cannot be a Pattern.

In the Bell version ~h€n the namp. operator is applied
to a natural variable it returns an object of datatype

M. Non-standard Features 175

String, but when applied to a created variable it returns an
object of datatype Name. In the Eerkeley version, the name
operator always returns an object cf datatype Namp..

In the Bell version the multiplication operator has
higher pr0cedence than the rlivision operator; in the
Berkeley version the precedence is the same.

1S~.Y!!Q.!£1..§.!.. There are no keywords in the Berkeley version
(and hence no keyword operator). Some of the Bell keyworrls
assume the form of procedures. these are listed in the table
belcw.

&ALfHABET
SANcnOF
&FNCLEVEL
&MAXLNGTH
&STCOUNT
&STIIMIT

ALP HT\ BET ()
"NeHOR ()
FNCLEVEL 0
MAXI.NGTH ()
STCOUNT ()
STLIMIT ()

These procedures are described in Appendix A, section II •

.Q~1~ty££li.!.. In the Berkeley version, numeric stri.ngs aLP
of datatype Integer. Numeric strings may have an initial
siqn and hence tne singie characters '+' and I_I in
isclation have the oatatype Integer and have the value zero
when used in arithm~t'ic cont.exts. CorrpsponiJingly, the null
value is of datatype Integer. In the Bell version, the null
valuR is called the null strin~ and is of datatypp string.

~:t§1.~m_::r~!l§f~r:§.!.. In the Bp.rkpley version, Pf.'fUHN,
FRETORN, NFETURN, and END are treated as system transfers,
having the same predefined meaninqs as in Bell. They may he
used as any other latpls in the program text, however, in
which case the special system meaning is lost.

Q1!tE1!!..!. Cbjects of datatype ot.her t.han String or
Integer cannot bp printed in the Rerkeley vp.rsion, an~ an
attempt to print such a value results in an execution-tim~

prror. In thp nell version an attempt to print such a valuQ
results in the printinq of a string designating the datatyp0
of the valu~.

h~siqninCJ thf" variiible OHTPn'r a Vrl]uP of mor0 than 117­
charactf'rs in the f\0rkelpy vf.lrsion rp.~ults in only ".ll~ first
13 2 be in q p r i n t (~d (c.\ s i 11 q 1 ~~ 1 i ne): i. nthe R~ 11 vp rs ion, a ~';

many lines as neccs~ary arc printed.

M. ton-standar~ Features 116

£r.Qg£~1!LJ!gI2£~§~nt.2t.i.Q.!L~There are a number of small
differences in th~ way that prcqrams may be represented;
most ccnsist of extra eptional features which have been
added to the Berkeley version.

In the B~rKeley version, the assignment siqn (=) nAe~

not te bounden by blanks; ~imilarly, the colon introducin~ a
go-to need not be preceded hy a blank.

In the Rerkeley version, the quote siqn used as a
literal delimiter may appear within that literal in pairs~

each pair is then treated as representing a single quote.
Thus 'LON"T' may be used to represent the string DON'T.

In the Berkeley version, statements continued over line
boundaries may be heoken anywhere; a blank is nev~r assume1
at the point of the break. In the Fell versio':\, statemeuts
may be broken only where a blank is ~equired.

In the Berkeley version, real literals nee~ not beqin
with digits {that is, they may begin with an initial decimal
feint} e

In the Berkeley version it is not npcessary to
terminate a program text with a statement]abpllerl END as it.
is in the Bell version. The program may terminate hy taking
a transfer to END, if no END label is pLesent. ENn may he
used as a label in a program text in which case it then
loses its system significance, an~ a program containing an
END label can terminate only by running out of program text;
this is not an error as it is in Bell (see Chapter 3). In
the Berkeley version it is not possible to specify by use of
an END statement which statement of the program is to he
executed first~ execution always begins with the first
statement of the program text.

Alternative characters may be used in the Berkp.ley
version to represent some of those which must otherwise be
multiple punched on an 026 keypunch. Thus the go-to may he
introduced by either a colon (:) or a slash (/). (If the
sla£h is used it must not be followed by any blanks as it
might then be indistinguishable from the binary division
operator.) The colon used as a delimiter between the upper
and lower bounds of an in1ex in ferming the prototype of an
array may also te represented by a slash. The alternation
operator (1) may be represente~ by two slashes (/~ and th~

square brackets of an item reference may be represented bV
(/ for an open bracket and I) for a close hracket. The Bell
v~rsion does not provide any of these particular options,
but has a different extended syntax to take advantage of

M. Non-standard Features 177

special characters available on the IBM 360; lower case
letters are also available.

The representation of latels is freer in the B~11

version than in the Berkeley ver~ion. In the Rell version a
label may consist of a letter or a digit followed by any
number of other characters from the entire character SAt
except blank. In the Berkeley version a label must be an
identifier; that is, it must begin with a letter an~ consist
of nothing but letters, numbers, and periods •

.TJ!f_£!2gf~.!!l_~i~.!.il}g~ In the Retkeley v~rsion, columns
72 and 71 of the program text are separat~~ hy tpn spa~es in
the output listing. The statement numbers always appPdr to
the left of the statements. In the Bell version the
statement numbers normally appear to the riqht of the
statements, hut it is possible to specify that they appear
to either the left or the right. This is done hy writinq thp.
terms LEFT or RIGHT following the listing directive LIST;
the, de fa u1 top t ion i 5 BIG HT• If here is noway to spec i f Y t hat
the statements should he numhered to the right in th0
Berkeley version.

In the Berkeley version the listing dir~ctivp. SPACE has
been added to cause one blank line to appear in the listinq •

.f!Q£5l1!!!~§..:. The fcllowinq procedures are available in
the Hell version but not in the Berkel8y version. Unless
otherwise indicated, their actions cannot he simulaten.

ARG () returns the name of the n-th argument in th8
declaration of a programmer-defined procedure.

DACKSPACE() hackspaces a file one logical recorrl.

CLEAR() causes all natural variables to he assiqnen thp
null valup. This procedure can be written in Berke10y Snobol
using NEXTV".R ().

CCLLP.C'rO forces a st.orage I'€qeneration. PIot. npened
since storage regoneration occurs automatically.)

COpy () produces a copy of an array or a data strllctur.(-).
It can he written in PerKP,lpy Snohcl usinq ITEM () for. arr.ay~

(see Cha ptcr 7), and AFPLY () for data structures.

M. Non-standard Features 118

DUMP () produces an unalphabetize:l list of all non-null
natural variahles an~ their values. It can he written in
Berkeley Snobol using NEXTVAR().

DUPL(} returns a string consisting of n duplications of
one of its arguments. It is virtually the same as the
~rcqrammer-defined procedure REPEAT() given in Chapter 6.

~VAL() r.eturns the result of evaluating a string which
is a Snobol expressicn or an cbject of datatype ?xpression.

FIELD() returns the name of the n-th field in the
declaration of a programmer-defined datatype. It can be
written in Berkeley Snobol, hecausethe Berk~ley PROTOTYPR()
procedure may be applien to structures (see Appendix ~,

Section II.Bl.

INTEGER () succeeds if its arqument is an inteqer. It
can be easily written as

IDFNT (DATATYPE (AFG) " INTEGBR')

(Tn the same way, any other test procedure for testinq
datatYFes may be written.)

LOAD() causes an external function to be loaded from
the litrary during execution.

LOC AL 0 re tl1rn s the name of t. he n-t h loea 1
varia b1~ of aprog r a mom e r-de fin ed Froc e dur e •

(i nternal)

OPSYN() allows the prograromer to specify synonyms for
proce1ures or operator.s. ~hus the same procerlure may he
referred to by more than one name and the same operator by
more ~han one symbol. In addition, operators and procedures
may be made ~ynonymous; thus this proceoure makes possible
the definition of new operators.

RBMDR() returns the integer remainder of divi1ing its
first argument by its second. This can he written in Snohol
as ~ proqrammer-defined procedure e~ploying nothinq but
arithmetic operators.

REPLACE () returns a string in which every character of
one argument has been replaced by a corresponding character
of anoth~r argument. It can he written a~ a programmer­
d~fined procedure in Snobol.

~~OPTR() cancels the tracinq of the variable named by
its argument.

M. Nen-standard Fea~ures 170

TABLE() creates a family of variables, similar to a
one-dimensional array except that individual variables may
be selected in terms of any data object, not just integers.
This datatype is not defined in the Bcrkel~y version, but
table-like structures can be formed using indirect
referencing if the selector is a string~

TRACE() initiates tracing of the variahle narne1 by its
argument.

nNLoAD 0 causes the unloading of a.n externa 1 library
functicn which is no longer needed.

VALUE() has the same effect as the indirect referencinq
operator when applied to a Strin~ or a Name, hut if VALUE
bas been defined to be a field of a structure, then it may
have an argument of that datatype as well.

Q.E!L!~.12!'§.!. The following operators are not available:

negation (.,)
cursor posi tion (~)

exponentiatior. (**l

The ,negation operator fails if its operand succee~s,

and succeeds if its operand fails. (Its counterpart, the
interrogation operator (1), which always succeeds, has heE»ll
i mI lemen ted as t.he IF () proced ure.)

The cursor position operator has a variable as it~

operand and is used within the pattern part of a rule. Thp
variable is assigned, by immediate assignment, an integer
representing the position of the cursor when pattern
matching occurs. Thus

'ABC' • B • (! F01 NT ER

causes POINTER to be assigned successively the valups
o and 1.

!f~~Qr1§~ ~hp. nerkeley version o~ Snobol contains no
keywords. Some keywords have been irplemented as predefined
procedures, as indicated in Section t of this appendix; thp
remaininq keywords, listed below, cannot be simulate(l,
although somptimp.s a similar eff~ct may b(~ achip-vp.l'i tllrouqh
other means. Thosp. whose values arp protected (i. p • r ~annot

l:;e chanqerl rlirectly by the programlT'pr) ar~ marked with dn

asterisk.

~. Non-standard Features 180

&ABEND is used to sp~cify wh~th€r or not a system cor o

~umF is to he Frinted at pr-ogram termination.

gARO?T has the same value as that of the predefine~

pattern ABORT. (*)

&ARB has the same value as that. of the pr ed ef i n(~ ,'1
pattern ARB. (*l

&BAL has the same value as that of the pt' edefin e d
pattern BAL. (*)

&CODE can be assigned an intpger which will he returne~

to the op~Lating system as the ~ser completion code at
program termination.

&DUMP is used to specify whether or not a dump of the
natural variables is to be printed at program termination.

&ERRtI~IT has a value which ccnt~ols the handling of
certain proJram ~rrors.

8ERRTYPE acquires an intpqer co~e identifying th~ type
of any program error which may occur. (*)

& FA II, has the same value as that. of t.he prenefined
Fattern pr~ It. (*)

&FENCE has the same value as t.hat of the pr edefincd
pat.t.ern FENCE. {*,

&FTRACE is used to sp~cify whether Or not diagnostic
tracing information is to be provided on calls to ann
returns from all programmer-defined procedures.

&FULLSCAN is used to specify ~heth~r or not the
fullscan mo1e of pattern matchinq (in which no heuristics
are emFloyed) is to he use~.

&INPUT is used to specify whether or not any input is
to cccur.

&LASTNO acquires as its value an integer specifyinq the
statement number of the previous statement executed. (*)

&CUTPUT is used to specify whether or not any output is
to occur.

M. ~cn-stanoard Features 181

£REM has the same value as that of the predcfine~

pattern REM. (*)

&RTNTY?E acquires aR value the string P.ETURN, FRETURN,
or NPETURN, depending on th@ type cf return mad~ by the last
proqrammer-rlefined procedure which returned. (*)

&S!FC00NT acquires as value an integer specifyinq how
many statements have faileti. (*)

&STNO ~cquires as value an integer specifying th~

statement number of the statement currently being executed.

&SnCCRED has thp. same value as that of the predefined
pattern SUCCF};D. (*)

&TRACE is used to specify whether or not tracing is to
occur..

&TRIM is used to specify ~hethAr or not all trailinq
blar.ks are to he trimmed on input •

.E.~i!.~f.!l__! a ri ~ 12.!~!5.:. "'he pr.P. de f i n~!d rat t'? t:'n v d r i. a hI f.)

SUeCrED, which always matches the null value (and ';o(hich h,,~

very limiterl practical application) is not available.

Q2t~tyP~~.:. The following datatypes do not exist in thp.
Berkeley version:

Table (see the descr i ption of the ."" Bt E () Proce<1l1 r e
abov~)

ExpJ:ession (see the " description
~valuation in section I of this appendix)

of deferred

External, which refers to external library functions
(see the d0 s c rip t ion 0 f the La AD () and UN LOA D () pr oc e <l u res
abcve) •

£~.ti~I!l__ !!!1t£hl.ng~ Therp. is no quickscan mode of
pattern-matching (a mode which makes uSP. of heuristics).
This is the norrral mane in the Bell version, while fullscan
is the normal mode in the Berkeley version.

AIiihmQtif£ Mixed motie arithmetic or comp~rj.~ons

(involvinq intefJp.rs and r~al numher~) ar.c not pl~rmit ted.

!2!!!.~1l!.£ '[hp. var.iahlp PUNCH has a pt'p.defined a~~ocii1tion

with t.hp [lunch file in thf-.! n~ll version; this is not. trup. of
the n~rkp.l~y vP[sion, hut thp association can he mad~ hy

" • t~ 0 n- s tan dar d FP. a t \1 res

~irnfly executing the rule

OUTPUT (' PUNCH' " PUNCH ')

182

~he Berkeley vprsion currently provi~es no compile-tim0
errcr messaq~s and no program statistics. As is indicated hy
the foregoing, it also provides no tracing facilitjps and no
dumF·

III •

.E.f.Q£f.9..1.r:.Q§.:,. The fcllowinq predefined procedures hav~

been added to the Bprkeley version; all are described mor g

fully in Appendix h.

CLOCK () ret.urns the 24-honr t.i!ne
17:00:~q). (See Appendix A, section IT.B.)

of (ee q ..

TYPEO returns t.he same resnlt, as DATATynE() for
objects of predefined rtatatyr-es, ano the str.ing nAT' for all
objects of programmer-definea nataty~es. (See Appendix A,
secticn IIaq.)

17EM() has been made more flexible and mote useful in
the Eerkel~y versicn than' it is in the Bell version. It is
described in detail in Chapt~r 7.

PFOT07YPB() has been siqnificantly extendea so that it
may be applie~ to structures f Patterns, and Na~es, as veIl
a.s tc Arrays. (See Appp.ndix ,~, section II. B.)

~ number of field selecticn procedures have heen ad1Ad
for use in conjunction with the systems-definecl "?rototypes"
of Patt~rns ann Names which are returned by the pnOTOTYP~()

proc€oure. The pr.oceauJ:es PARAM 0, FIPSTO, 'PBST(), LEFTO,
and RTGHT() may he used to decompose Patterns into the
objects from which t.hpy wpr.e conRtructed. !l. similar service
for Names is provided by the procedurt?s nIGHT (), F rd1ILY () ,
and SEIECTOR{). (See Appendix A, section T.C.)

N'EXTV1\~ () returns the names of all members of any
fa~ily cyclically, treating the set of all non-null natural
variables as a Ufamily." (See Appendix 1.. , section II.B.)

ABORT, 151

Addition, 19

ALPHABET 0, 140

Alternation, 35

ANCHOR(), 43, 145

Anchored pattern
matching, 43, 46

ANY (), 36, 128

APPLY{), 92, 144

ARB, 52, 150

ARBNO{), 46, 130

Arithmetic operators, 153
addition, 19
division, 19
multiplication, 19
negative, 8
positive, 8
subtraction, 19

ARRAY{), 104, 130

Array
creation, 100
dimension, 103
index, 105
item reference, 101,

106
prototype, 110

Assignment
assignment rule, 10
conditional assignment,

38
immediate assignment,

40

INDEX

183

BAL, 150

Binary operators, 16, 153
addition, 19
alternation, 35
concatenation, 17
conditional assignment,

38
division, 19
immediate assignment, 40
multiplication, 19
subtraction, 19

BREAK(), 41, 128

Carriage control, 146

Character set representation,
158

CLOCK (), 140

CODE (), 145

Comment card, 156

Compilation
during execution, 145
of program text, 6

Compiler, 6

Compile-time error messages,
166

Concatenation, 17
with indirect referencing,

60
with null value, 29
within patterns, 39

Conditional assignment, 38

Conditional go-to, 23

Assignment rule, 10 . Continuation card, 155

Index

CONVERT(), 145

Created variuble, 101
array item, 101
name of, 116
structure field, 135

DATA (), 135

DATATYPE(), 136

. Datatypes, 126
array, 100
code, 145
int.eger, 8
name, 116
pattern, 49
prograromer-defined,

135
real, 19
string, 8

DATE (), 140

Declarations, 135
DATA (), 135
DEFINE(), 135

Deferred evaluation, 50

DEFINE() , 72, 135

DETACH() , 147

DIFFER() , 26, 127

Division, 19

-EJECT, 156

END, 23

ENDGROUP(), 147

EOI (), 148

18~

EORLEVEL(), 148

Entry label, 73

EQ (), 28 t 127

Error messages
compile-time, 166
execution-time, 167

Evaluation rule, 25.

Execution of programs, 6

Execution-time error
messages, 167

Extended syntax, 156

External variable, 80, 90

FAIL, 150

Failure
in pattern matching, 33
of input, 24
of item reference, 106
of procedure call, 26, 75
of the rule, 24

FAMILY(), 133

Family, 100, 138, 141

FENCE, 151

Field, 135

Field selection procedure,
135

FIRST (), 131

Flow of control, 21

FNCI.EVEL (), 141

Index

Formal variable, 72

FREEZE (), 148

FRETURN, 75

GE (), 28, 127

Go-to
condition3.l, 23
unconditional, 22
with indirect

referencing, 67

GT (), 28, 127

IDENT (), 26, 127

Identifier form, 9

IF{), 144

Iwmediate assignment; 40

Indirect referencing, 55

Infinite loop. See Loop,
infinite

INPUT, 13
failure of, 24

INPUT (), 146

Input/output procedures,
146

Integer, 8

Integer literal, 9

Internal variable, 72,
76, 78

Interpreter, 6

185

ITEM(), 108, 143

Item, 101

Item reference, 101

Label, 21

LE (), 28, 127

LEFT(), 132

LEN (), 4 2, 12 9

LGT (), 27, 127

-LIST, 156

Listing control card, 156

Loop, 29
infinite. See Infinite

loop

LT (), 28, 127

MAXLNGTH (), 141

Multiplication, 19

Name
of created variable, 101,

116
of natural variable, 9,

56, 101, 116

Name operator, 116

NE(), 28, 127

Negative, 8

NEXTVAR(), 141

Index

NOTANY() , 36, 128 CONVERT() , 145
DATA() , 135

NRETURN, 75, 90, 118 DA'rArrYPE () , 136
DATE () , 140

Null value, 11 DEFINE (), 72, 135
DETACH() , 147

Numeric string, 8 DIFFER () , 26, 127
ENDGROUP() , 147
EOI () , 148
EORLEVEL() , 148

Omitted argument, 77, 126 EQ () , 28, 127
FAMILY() , 133

Operators, 16 FIRST () , 131
summary of, 153 FNCLEVEL() , 141

FREEZE () , 148
OU'l"PUT, 12 GE () , 28, 127

GT () , 28, 127
OUTPUT() , 146 IDENT () , 26, 127

IF () , 144
INPUT() , 146
ITEM () , 108, 143

PARAM() , 131 LE () , 28, 127
LEFT () , 132

Passing of arguments, 77 LEN () , 42, 129
LGT () , 27 , 127

Pattern matching, 33 LT () , 28, 127
MAXLNGTH() , 141

Pattern-matching rule, 33 NE () , 28, 127
NEXTVAR() , 141

POS () , 46, 129 NOTANY () , 36, 128
OUTPUT() , 146

Positive, 8 PARAMO, 131
POS () , 46, 129

Precedence, 153 PROTOTYPE() , 110, 137
REMARK() , 147

Predefined pattern REST () , 131
variables, 52, 150 REWIND() , 147

RIGHT () , 132
Predefined procedures RPOS () , 46 , 130

summary of, 123 RTAB () , 44, 129
ALPHABET() , 140 SELECTOR() , 134
ANCHOR() , 43, 145 SIZE() , 16 , 136
ANY () , 36, 128 SPfu~ () , 41, 128
APPLY() , 92, 144 STCOUNT() , 140
ARBNO() , 46, 130 STLIMIT() , 141
ARRAY() , 104, 130 TAB () 1 44, 129
BREAK () , 41, 128 TIME () , 140
CLOCK() , 140 TRIM () , 15, 130
CODE () , 145 TYPE () , Ill, 136

186

~.- ~ - --J.nuex

Procedure call, 14, 76
argument of, 77
failure of, 26, 75
level of, 87
recursive, 74
side effect of, 84
summary of execution

of, 154

Procedure definition, 70
DEFINE (), 72
entry label, 73
formal variable, 72
internal variable,

72,76,78
procedure body, 74
procedure name, 72
result variable, 75

Procedure reference, 14

Procedures, 14, 70
predefined, summary

of, 123
programmer-defined,

70

Program execution, 6

Program text
representation, 155

programmer-defined
datatypes, 135

Programmer-defined
procedures, 70

DEFINE (), 72
entry label, 73
external variable,

80, 90
formal variable, 72
FRETURN, 75
internal variable,

72, 76, 78
NRETURN, 75, 90, 118
procedure body, 74
procedure name, 72
recursive, 74

187

result variable, 75
RETURN, 75
returning a variable,

90
side-effect, 84
summary of execution

of, 154

PROTOTYPE(), 110, 137

Prototype
of array, 110
of name, 139
of pattern, 138
of structure, 137
predefined, 138

Quotation marks, 157

Real literal, 145

Real nwnber, 19

Recursive procedure call,
74

REM, 52, 150

REMARK(), 147

Replacement rule, 34

REST (), 131

Result variable, 75

RETURN, 75

REWI ND (), 14 7

RIGHT (), 132

RPOS (), 46, 130

RTAB(), 44, 129

Index

Rule
assignmer.. t, 10
evaluation, 25
pattern-matching, 33
replacement, 34

SELECTOR(), 134

Selector, 106

SIZE(), 16, 136

-SPACE, 156

SPAN (); 41; 128

Statement terminator, 155

STCOUNT () t 140

STLIHIT{), 141

St.ring, 8

String literal, 8

String reference, 33

Subtraction, 19

Syntax
extended, 156
of program texts, 161

System transfers
END, 23

188

FRETURN, 75
NRETURN, 75, 90, 118
RETURN, 75

TAB(), 44, 129

Test procedures, 127
predefined, 26
programmer-defined, 81

TIME(), 140

TRIt-1 (), 15, 130

TYPE (), Ill, 136

Unanchored pattern matching,
44, 145

Unury operators, 16, 153
deferred evaluation, 50
indirect referencing, 55
name, 116
negative, 8
positive, 8

-UNLIST, 156

Variable, 9
created, 101, 116
external, 80, 90
internal, 72, 76, 78
natural, 9, 56, 101, 116

	[i] Title Page

	[ii] Epigraph

	[iii] Contents

	[iv]
	[v]
	[vi]
	[vii] Preface

	001 Ch.1 Computer Programming in Snobol

	002
	003
	004
	005
	006
	007
	008 Ch.2 Assignment

	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021 Ch.3 The Flow of Control

	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033 Ch.4 Pattern Matching

	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055 Ch.5 Indirect Referencing

	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070 Ch.6 Programmer-Defined Procedures

	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100 Ch.7 Arrays

	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123 App.A Summary of Predefined Procedures

	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150 App.B Summary of Predefined Pattern Variables

	151
	152
	153 App.C Summary of Operators

	154 App.D Summary of Procedure Execution

	155 App.H Program Text Representation

	156
	157
	158 App.I Character Set Representations

	159
	160
	161 App.J Syntax of Program Texts

	162
	163
	164
	165
	166 App.K Summary of Compile-Time Error Messages

	167 App.L Summary of Execution-Time Error Messages

	168
	169
	170
	171
	172 App.M Non-Standard Features of Berkeley Snobol

	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183 Index

	184
	185
	186
	187
	188

